Bovine leukemia virus (BLV) proviral load is controlled by T-cell responses, which require vitamin A (VA) derived from food. However, whether dietary VA restriction for marbling impairs the T-cell responses that control BLV proviral load in beef cattle is unknown. We assessed T-cell subsets, interferon (IFN)-γ gene expression, and BLV proviral load in naturally BLV-infected Japanese Black cattle that were fed a diet with decreased VA levels.
View Article and Find Full Text PDFThe effectiveness of on-farm continuous flow high-temperature short-time (HTST) pasteurization (i.e., 72°C for 15 s) for the inactivation of bovine leukemia virus (BLV) in milk was investigated with a sheep bioassay.
View Article and Find Full Text PDFBovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). We used microchip electrophoresis in combination with automatic image analysis to develop a novel high-throughput PCR-RFLP to type the gene sequences that encode BLV Tax 233. This method revealed that 233L-Tax is more prevalent than 233P-Tax in cattle in Japan.
View Article and Find Full Text PDF