Publications by authors named "Yuzi Liu"

Metal halide octahedra form the fundamental functional building blocks of metal halide perovskites, dictating their structures, optical properties, electronic structures, and dynamics. In this study, we show that the connectivity of bismuth halide octahedra in CsBiBr and CsBiI quantum dots (QDs) changes with different halide elements. We use first-principles calculations to reveal the key role of the connectivity of bismuth halide octahedra on the wave function symmetry, Huang-Rhys factor, and exciton-phonon interaction strength.

View Article and Find Full Text PDF

The degradation of Ni-rich cathodes during long-term operation at high voltage has garnered significant attention from both academia and industry. Despite many post-mortem qualitative structural analyses, precise quantification of their individual and coupling contributions to the overall capacity degradation remains challenging. Here, by leveraging multiscale synchrotron X-ray probes, electron microscopy, and post-galvanostatic intermittent titration technique, the thermodynamically irreversible and kinetically reversible capacity loss is successfully deconvoluted in a polycrystalline LiNiMnCoO cathode during long-term charge/discharge cycling in full cell configuration.

View Article and Find Full Text PDF

The manipulation of electronic polymers' solid-state properties through processing is crucial in electronics and energy research. Yet, efficiently processing electronic polymer solutions into thin films with specific properties remains a formidable challenge. We introduce Polybot, an artificial intelligence (AI) driven automated material laboratory designed to autonomously explore processing pathways for achieving high-conductivity, low-defect electronic polymers films.

View Article and Find Full Text PDF

The development of electrocatalysts with reduced iridium (Ir) loading for the oxygen evolution reaction (OER) is essential to produce low-cost green hydrogen from water electrolysis under acidic conditions. Herein, an atomically thin layer of iridium oxide (IrO) has been uniformly dispersed onto cobalt oxide (CoO) nanocrystals to improve the efficient use of Ir for acidic OER. In situ characterization and theoretical calculations reveal that compared to the conventional IrO cluster, the atomically thin layer of IrO shows stronger interaction with the CoO and consequently higher OER activity due to the Ir-O-Co bond formation at the interface.

View Article and Find Full Text PDF

Dislocations in van der Waals (vdW) layered nanomaterials induce strain and structural changes that substantially impact thermal transport. Understanding these effects could enable the manipulation of dislocations for improved thermoelectric and optoelectronic applications, but experimental insights remain limited. In this study, we use synthetic Eshelby twisted vdW GeS nanowires (NWs) with single screw dislocations as a model system to explore the interplay between dislocation-induced structural modifications and lattice thermal conductivity.

View Article and Find Full Text PDF

Fabricating organic semiconducting materials into large-scale, well-organized architectures is critical for building high-performance molecular electronics. While graphene nanoribbons (GNRs) hold enormous promise for various device applications, their assembly into a well-structured monolayer or multilayer architecture poses a substantial challenge. Here, we report the preparation of length-defined monodisperse GNRs via the integrated iterative binomial synthesis (IIBS) strategy and their self-assembly into submicrometer architectures with long-range order, uniform orientation, as well as regular layers.

View Article and Find Full Text PDF

We report the appearance of superconductivity in single-unit-cell NdNiO, exhibiting a transition temperature similar to that of thicker films. In situ synchrotron x-ray scattering performed during growth of the parent phase, NdNiO, shows that the necessary layer-by-layer deposition sequence does not follow the sequence of the formula unit but an alternate order due to the relative stability of the perovskite unit cell. We exploit this insight to grow ultrathin NdNiO heterostructures and conduct in situ studies of topotactic reduction, finding that formation of the square-planar phase occurs rapidly and is highly sensitive to reduction temperature, with small deviations from the optimum condition leading to inhomogeneity and the loss of superconductivity.

View Article and Find Full Text PDF

Intrinsic structural and oxidic defects activate graphitic carbon electrodes towards electrochemical reactions underpinning energy conversion and storage technologies. Yet, these defects can also disrupt the long-range and periodic arrangement of carbon atoms, thus, the characterization of graphitic carbon electrodes necessitates in-situ atomistic differentiation of graphitic regions from mesoscopic bulk disorder. Here, we leverage the combined techniques of in-situ attenuated total reflectance infrared spectroscopy and first-principles calculations to reveal that graphitic carbon electrodes exhibit electric-field dependent infrared activity that is sensitive to the bulk mesoscopic intrinsic disorder.

View Article and Find Full Text PDF

Localized atomistic disorder in halide-based solid electrolytes (SEs) can be leveraged to boost Li mobility. In this study, Li transport in structurally modified LiHoCl, via Br introduction and Li deficiency, is explored. The optimized Li Ho Cl Br achieves an ionic conductivity of 3.

View Article and Find Full Text PDF

In hafnia-based thin-film ferroelectric devices, chemical phenomena during growth and processing, such as oxygen vacancy formation and interfacial reactions, appear to strongly affect device performance. However, the correlation between the structure, chemistry, and electrical potentials at the nanoscale in these devices is not fully known, making it difficult to understand their influence on device properties. Here, we directly image the composition and electrostatic potential with nanometer resolution in the cross section of a nanocrystalline W/HfZrO (HZO)/W ferroelectric capacitor using multimodal electron microscopy.

View Article and Find Full Text PDF

Hydrogels, known for their mechanical and chemical similarity to biological tissues, are widely used in biotechnologies, whereas semiconductors provide advanced electronic and optoelectronic functionalities such as signal amplification, sensing, and photomodulation. Combining semiconducting properties with hydrogel designs can enhance biointeractive functions and intimacy at biointerfaces, but this is challenging owing to the low hydrophilicity of polymer semiconductors. We developed a solvent affinity-induced assembly method that incorporates water-insoluble polymer semiconductors into double-network hydrogels.

View Article and Find Full Text PDF
Article Synopsis
  • Diamond's unique properties make it ideal for quantum and electronic tech, but its growth on other materials is limited, affecting technology integration.
  • The researchers developed a method to directly bond single-crystal diamond membranes to various materials, achieving minimal contamination and consistent quality.
  • Their ultra-thin diamond membranes show potential for high-performance quantum applications and compatibility with advanced microscopy techniques, paving the way for new hybrid systems in technology.
View Article and Find Full Text PDF
Article Synopsis
  • Microstrain and surface-to-bulk defect propagation hinder the development of high-performance, durable batteries, but their origins are not well understood.* -
  • Research conducted using advanced X-ray techniques reveals that the arrangement of transition metals in battery material precursors plays a crucial role in nanoscale phase changes and the development of microstrain during synthesis.* -
  • The findings suggest a new approach to battery material synthesis that could minimize defects and improve structural stability, marking a significant advance towards creating ideal battery materials.*
View Article and Find Full Text PDF
Article Synopsis
  • The study explores the unique interactions between entangled electron and hole pairs, called excitons, in a type of semiconducting material known as hybrid perovskite, particularly when doped with neodymium (Nd).
  • It finds that Nd-doping significantly enhances the exciton-spin interaction, which leads to much longer carrier lifetimes in cryogenic conditions, about 10 times longer than non-doped samples.
  • The Kondo-like interaction between excitons and localized Nd spins can be fine-tuned by adjusting the Nd concentration or applying an external magnetic field, affecting the dynamics of exciton recombination.
View Article and Find Full Text PDF

Food comprises proteins, lipids, sugars and various other molecules that constitute a multicomponent biological system. It is challenging to investigate microscopic changes in food systems solely by performing conventional experiments. Molecular dynamics (MD) simulation serves as a crucial bridge in addressing this research gap.

View Article and Find Full Text PDF

Peptide materials often employ short peptides that self-assemble into unique nanoscale architectures and have been employed across many fields relevant to medicine and energy. A majority of peptide materials are high in β-sheet, secondary structure content, including heme-binding peptide materials. To broaden the structural diversity of heme-binding peptide materials, a small series of peptides were synthesized to explore the design criteria required for (1) folding into an α-helix structure, (2) assembling into a nanoscale material, (3) binding heme, and (4) demonstrating functions similar to that of heme proteins.

View Article and Find Full Text PDF

The cluster-based body-centered-cubic superlattice (cBCC SL) represents one of the most complicated structures among reported nanocrystal assemblies, comprised of 72 truncated tetrahedral quantum dots per unit cell. Our previous report revealed that truncated tetrahedral quantum dots within cBCC SLs possessed highly controlled translational and orientational order owing to an unusual energetic landscape based on the balancing of entropic and enthalpic contributions during the assembly process. However, the cBCC SL's structural transformability and mechanical properties, uniquely originating from such complicated nanostructures, have yet to be investigated.

View Article and Find Full Text PDF

Electrochemical reduction of carbon dioxide to organic chemicals provides a value-added route for mitigating greenhouse gas emissions. We report a family of carbon-supported Sn electrocatalysts with the tin size varying from single atom, ultrasmall clusters to nanocrystallites. High single-product Faradaic efficiency (FE) and low onset potential of CO conversion to acetate (FE = 90% @ -0.

View Article and Find Full Text PDF

Two-dimensional cadmium selenide nanoplatelets (NPLs) exhibit large absorption cross sections and homogeneously broadened band-edge transitions that offer utility in wide-ranging optoelectronic applications. Here, we examine the temperature-dependence of amplified spontaneous emission (ASE) in 4- and 5-monolayer thick NPLs and show that the threshold for close-packed (neat) films decreases with decreasing temperature by a factor of 2-10 relative to ambient temperature owing to extrinsic (trapping) and intrinsic (phonon-derived line width) factors. Interestingly, for pump intensities that exceed the ASE threshold, we find development of intense emission to lower energy in particular provided that the film temperature is ≤200 K.

View Article and Find Full Text PDF
Article Synopsis
  • Ether-based solvents can effectively formulate ion-solvent cointercalation electrolytes for Na-ion and K-ion batteries, despite previous concerns about graphite exfoliation in Li-ion batteries.
  • By developing a specific electrolyte, 1M LiBF in 1,2-dimethoxyethane, the researchers achieved high efficiency (about 91% initial Coulombic efficiency) and capacity retention (>88%) over 400 cycles in natural graphite.
  • The study provides insights into the unique behavior of the electrolyte and pseudo-solid-electrolyte interphase (SEI) formation through experimental and simulation techniques, paving the way for enhanced understanding and application of ether-based electrolytes in various battery types.
View Article and Find Full Text PDF
Article Synopsis
  • X-ray photon correlation spectroscopy (XPCS) is a technique that can observe atomic-scale dynamics in materials during both stable and changing conditions.
  • This study focuses on the relaxor ferroelectric material PbMgNbO (PMN) and shows that a weak AC electric field significantly affects the speckle patterns in diffuse scattering related to polar nanodomains.
  • The researchers propose a model to explain the unexpected dynamic tilting of the material in response to the X-ray beam, suggesting that this piezoresponse may be important for interpreting results in XPCS and similar studies of insulating materials.
View Article and Find Full Text PDF

Batteries and electrochemical capacitors (ECs) are of critical importance for applications such as electric vehicles, electric grids, and mobile devices. However, the performance of existing battery and EC technologies falls short of meeting the requirements of high energy/high power and long durability for increasing markets such as the automotive industry, aerospace, and grid-storage utilizing renewable energies. Therefore, improving energy storage materials performance metrics is imperative.

View Article and Find Full Text PDF

Increasing the energy density of lithium-ion batteries, and thereby reducing costs, is a major target for industry and academic research. One of the best opportunities is to replace the traditional graphite anode with a high-capacity anode material, such as silicon. However, Si-based lithium-ion batteries have been widely reported to suffer from a limited calendar life for automobile applications.

View Article and Find Full Text PDF

Developing Type-I core/shell quantum dots is of great importance toward fabricating stable and sustainable photocatalysts. However, the application of Type-I systems has been limited due to the strongly confined photogenerated charges by the energy barrier originating from the wide-bandgap shell material. In this project, we found that through the decoration of Au satellite-type domains on the surface of Type-I CdS/ZnS core/shell quantum dots, such an energy barrier can be effectively overcome and an over 400-fold enhancement of photocatalytic H evolution rate was achieved compared to bare CdS/ZnS quantum dots.

View Article and Find Full Text PDF

Benefiting from high energy density (2,600 Wh kg) and low cost, lithium-sulfur (Li-S) batteries are considered promising candidates for advanced energy-storage systems. Despite tremendous efforts in suppressing the long-standing shuttle effect of lithium polysulfides, understanding of the interfacial reactions of lithium polysulfides at the nanoscale remains elusive. This is mainly because of the limitations of in situ characterization tools in tracing the liquid-solid conversion of unstable lithium polysulfides at high temporal-spatial resolution.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncmjpgui6j4vgpie1oaqvog3fqbcmrhhp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once