Publications by authors named "Yuzhuo Song"

Article Synopsis
  • - The study examined how dietary supplements of semen vaccariae extracts (SVE) affect lactating sows, focusing on their growth, milk quality, and gene expression related to mammogenesis.
  • - Results showed that sows receiving SVE (especially 3.0 g/kg) had better average daily gains, higher serum hormone levels, improved amino acid concentrations in both plasma and milk, and enhanced overall milk quality.
  • - The optimal dosage of 3.0 g/kg SVE significantly boosted piglet growth and lactation yield while also increasing immunoglobulin levels, suggesting potential benefits for the health and development of piglets.
View Article and Find Full Text PDF

Improving the drug loading and delivery efficiency of biodegradable nanomaterials used for targeting prostate cancer (PCa) remains a challenging task. To accomplish this task, herein, a new surface molecularly imprinted polymer (ZIF-8/DOX-HA@MIP) was designed and constructed with a hyaluronic acid (HA)-modified zeolitic imidazolate framework-8 (ZIF-8) metal-organic framework loaded with doxorubicin (DOX) as a substrate and a responsive molecularly imprinted polymer film as a shell. Owing to the large surface area of ZIF-8, DOX was successfully loaded into the ZIF-8/DOX-HA@MIP with a high drug loading efficiency (more than 88%).

View Article and Find Full Text PDF

In this study, a sialic acid (SA) and transferrin (TF) imprinted biodegradable disulfide bridging organosilicas-based drug delivery system (SS-DMONS/DOX-Ce6@MIPs) for targeted cancer therapy is constructed, for the first time. Disulfide bridged dendritic mesoporous organosilicas nanoparticles (SS-DMONs) not only enhance drug loading as the drug repository, but also provide enough specific surface area for the molecular imprinting shell to expose more degradation and imprinted sites on the surface. In addition, SS can be disturbed in a highly reducing tumor microenvironment to achieve degradation.

View Article and Find Full Text PDF

Here, a novel molecularly imprinted photopolymer was prepared using CsPbBr quantum dots as the fluorescence source, TpPa-2 as substrate for selective solid fluorescence detection of patulin (PAT). TpPa-2 can promote efficient recognition of PAT due to its unique structure and significantly improve the fluorescence stability and sensitivity. The test results showed that the photopolymer exhibited large adsorption capacity (131.

View Article and Find Full Text PDF

Herein, we designed and constructed a novel biodegradable molecularly imprinted nanoparticles (Mg-SMSNs/DOX-Ce6 @MIPs) using a new degradable functional monomer prepared by glycerol and lactide, on magnesium ion-doped stellated mesoporous silica nanoparticles (Mg-SMSNs). These nanoparticles loaded with the anticancer drug doxorubicin (DOX) and chlorin e6 (Ce6) were used to target sialic acid (SA) overexpressed on the surface of tumor cells and release drugs in response to the tumor microenvironment. The molecularly imprinted layer avoided premature drug leakage, meanwhile, the large number of ester bonds contained in the functional monomers in the layer degraded by protonation in the tumor microenvironment to expose the drugs.

View Article and Find Full Text PDF