Hollow microspheres with open windows on the shells have shown significant potential in adsorption, catalysis, and drug delivery fields, owing to their low density, large interior volume, high specific surface area, and abundant availability of adsorption sites. However, creating open hollow spheres with structurally stable and entirely organic-functionalized surfaces remains a challenge. Herein, we fabricated polysilsesquioxane open hollow spheres using trialkoxysilane containing mercaptopropyl groups under vigorous stirring, employing polystyrene microspheres as a template.
View Article and Find Full Text PDFA novel hierarchical CNFs/NiP-Ni hybrid film has been successfully deposited on magnesium. Taking advantage of its super lightweight current collector and combinatorial battery-like/capacitor energy storage mechanisms, the constructed symmetric SC delivers a superior energy density (52.1 W h kg) with exceptional cycling stability (remaining 94% after 10 000 cycles).
View Article and Find Full Text PDFEnvironmental pollution of phosphorus is becoming increasingly concerning, and phosphate removal from water has become an important issue for controlling eutrophication. Modified metal-organic framework (MOF) materials, such as UiO-66-NH, are promising adsorbents for phosphate removal in aquatic environments due to their high specific surface area, high porosity, and open active metal sites. In this study, a millimeter-sized alginate/UiO-66-NH composite hydrogel modified by polyethyleneimine (UiO-66-NH/SA@PEI) was prepared.
View Article and Find Full Text PDFDiffusion models have garnered great interest lately in Magnetic Resonance (MR) image reconstruction. A key component of generating high-quality samples from noise is iterative denoising for thousands of steps. However, the complexity of inference steps has limited its applications.
View Article and Find Full Text PDFUnlabelled: Compared to , the lower genetic transformation efficiency of is a technical bottleneck for rice molecular breeding. Specifically, callus browning frequently occurs during the culture of the elite variety 93-11, leading to poor culturability and lower genetic transformation efficiency. Here, 67 QTLs related to culturability were detected using 97 introgression lines (designated as 9DILs) derived from Dongxiang common wild rice (DXCWR, Griff.
View Article and Find Full Text PDFAfter skin tissue trauma, wound infections caused by bacteria posed a great threat to skin repair. However, resistance to antibiotics, the current treatment of choice for bacterial infections, greatly affected the efficiency of anti-infection and wound healing. Therefore, there has been a critical need for the development of novel antimicrobial materials and advanced therapeutic methods to aid in skin repair.
View Article and Find Full Text PDFThe inherent limitations of Cornstarch (CS) and Carboxymethyl Cellulose (CMC) membranes, such as brittleness, fragility, and water solubility, limit their use in controlled-release fertilizers. This study reports on the synthesis of crosslinked CMC/CS-20-E composite membranes using the casting technique, with epichlorohydrin (ECH) as the crosslinking agent in an acidic environment to crosslink CS and CMC. The synthesized composite film demonstrates remarkable water resistance, as evidenced by the insignificant alteration in its morphology and structure post 72 h of water immersion.
View Article and Find Full Text PDFPhenols, dyes, and metal ions present in industrial wastewater can adversely affect the environment and leach biological carcinogens. Given that the current research focuses only on the removal of one or two of those categories. Herein, this work reports a novel ZIF-8@IL-MXene/Poly(N-isopropylacrylamide) (NIPAM) nanocomposite hydrogel that can efficiently and conveniently absorb and separate multiple pollutants from industrial wastewater.
View Article and Find Full Text PDFNitrogen-rich porous organic polymers were fabricated through a nonreversible ring-opening reaction from polyamines and polyepoxides (PAEs). The epoxide groups reacted with both primary and secondary amines provided by the polyamines at different epoxide/amine ratios with polyethylene glycol as the solvent to form the porous materials. Fourier-transform infrared spectroscopy confirmed the occurrence of ring opening between the polyamines and polyepoxides.
View Article and Find Full Text PDFWith the rapid growth of 5G communication technology, it is imperative to produce electromagnetic interference (EMI) shielding materials to combat the growing electromagnetic radiation pollution. For new shielding applications, EMI shielding materials with high flexibility, light weight and good mechanical strength are in high demand. Due to their light weight, high flexibility, excellent EMI shielding performance, high mechanical properties, and multifunctionality, TiCT MXene nanocomposite films have shown absolute benefits in EMI shielding in recent years.
View Article and Find Full Text PDFSince "click" chemistry was first reported in 2001, it has remained a popular research topic in the field of chemistry due to its high yield without byproducts, fast reaction rate, simple reaction, and biocompatibility. It has achieved good applications in various fields, especially for the preparation of hydrogels. The development of biomedicine presents new challenges and opportunities for hydrogels, and "click" chemistry provides a library of chemical tools for the preparation of various innovative hydrogels, including cell culture, 3D bioprinting, and drug release.
View Article and Find Full Text PDFAlthough many advances have been made in medicine, traumatic bleeding and wound infection are two of the most serious threats to human health. To achieve rapid hemostasis and prevent infection by pathogenic microbes, the development of new hemostatic and antibacterial materials has recently gained significant attention. In this paper, safe, non-toxic, and biocompatible polyvinyl alcohol (PVA); carboxymethyl cellulose (CMC), which contains several carboxyl and hydroxyl groups; and polyethylene glycol (PEG), which functions as a pore-forming agent, were used to prepare a novel PVA/CMC/PEG-based composite hydrogel with a macroporous structure by the freeze-thaw method and the phase separation technique.
View Article and Find Full Text PDFOrganic phenolic pollutants in industrial wastewater cause severe environmental pollution and physiological damage. Poly (N-isopropylacrylamide) (PNIPAM) hydrogels generally have poor mechanical strength and are also intrinsically frangible, limiting their widespread applications in wastewater treatment. Combining them with 2-dimensional materials can also only improve the mechanical properties of hydrogels.
View Article and Find Full Text PDFThe hydrogel prepared by graft copolymerization of starch (ST) and acrylamide (AM) is a commonly used absorbent material; however, due to their irregular network structure and a limited number of hydrophilic groups, starch-based hydrogels have poor water absorption and water retention. To overcome this, here, we provide a new preparation method for starch-based hydrogels. Using cerium ammonium nitrate (CAN) as an initiator, the starch-acrylamide-cellulose (CMC)/poly(ethylene glycol) (S-A-M/PEG) superabsorbent hydrogel was prepared by graft copolymerization.
View Article and Find Full Text PDFA rubber composite was prepared by using methyltriethoxysilane (MTES) to modify silica (SiO) and epoxidized eucommia ulmoides gum (EEUG) as rubber additives to endow silica with excellent dispersion and interfacial compatibility under the action of processing shear. The results showed that compared with the unmodified silica-reinforced rubber composite (SiO/EUG/SBR), the bound rubber content of MTES-SiO/EEUG/EUG/SBR was increased by 184%, and its tensile strength, modulus at 100% strain, modulus at 300% strain, and tear strength increased by 42.1%, 88.
View Article and Find Full Text PDFPhenolic compounds are important industrial raw materials for various industrial applications, but phenol-containing wastewater creates significant environmental and biological hazards. To address these issues, a three-dimensional network graphene oxide-cyanoethyltriethoxysilane-β-cyclodextrin/poly (N-isopropylacrylamide) (GO-CTES-β-CD/PNIPAM) nanocomposite hydrogel as a phenol recovery adsorbent is prepared herein by in-situ polymerization. Double graft modification on the graphene oxide (GO) via the silane coupling agent 2-cyanoethyltriethoxysilane (CTES) and single (6-tetraethylenepentamine-6-deoxy)-β-cyclodextrin (NH-β-CD) compensated the loss of the active sites on both GO and N-isopropylacrylamide (NIPAM), and the hydrogel shows excellent mechanical properties as the chemical crosslinking and physical entanglement of the two components.
View Article and Find Full Text PDFA modified graphene oxide/nanodiamond/nanozinc oxide (MGO/ND/nanoZnO) functional hybrid filler is designed and prepared to improve the vulcanization efficiency of a rubber composite and to reduce the use of ZnO. ND was grafted onto graphite oxide with the aid of 4,4'-methylene diphenyl diisocyanate (MDI). NanoZnO, with high surface activity, was then loaded onto the MGO/ND complex through the wet chemical method, in order to synthesize the MGO/ND/nanoZnO functional hybrid filler.
View Article and Find Full Text PDFModern pharmaceutics requires novel drug loading platforms with high drug loading capacity, controlled release, high stability, and good biocompacity. Metal-organic frameworks (MOFs) show promising applications in biomedicine owing to their extraordinarily high surface area, tunable pore size, and adjustable internal surface properties. However, MOFs have low stability due to weak coordinate bonding and limited biocompatibility, limiting their bioapplication.
View Article and Find Full Text PDFPorous organosilica monoliths have attracted much attention from both the academic and industrial fields due to their porous structure; excellent mechanical property and easily functionalized surface. A new mercapto-functionalized silicone monolith from a precursor mixture containing methyltrimethoxysilane; 3-mercaptopropyltrimethoxysilane; and 3-mercaptopropyl(dimethoxy)methylsilane prepared via a two-step acid/base hydrolysis-polycondensation process was reported. Silane precursor ratios and surfactant type were varied to control the networks of porous monolithic gels.
View Article and Find Full Text PDFMetal organic frameworks (MOFs), also called porous coordination polymers, have attracted extensive attention as molecular-level organic-inorganic hybrid supramolecular solid materials bridged by metal ions/clusters and organic ligands. Given their advantages, such as their high specific surface area, high porosity, and open active metal sites, MOFs offer great potential for gas storage, adsorption, catalysis, pollute removal, and biomedicine. However, the relatively weak stability and poor mechanical property of most MOFs have limited the practical application of such materials.
View Article and Find Full Text PDFRaspberry-like hollow-spheres-on-sphere (HSOS) particles with reactive surfaces, uniform sizes and monodisperse properties were rational designed and fabricated to immobilize gold nanoparticles for the catalytic reduction of 4-nitrophenol. HSOS polysilsesquioxane (PSQ) particles were constructed by an organic alkali catalyzed sol-gel process from trialkoxysilane precursors with stabilized polystyrene (PS) nanoparticles as both a sacrifice template and a Pickering emulsifier. The PSQ particles were fabricated in an ice bath with methyltrimethoxysilane and mercaptopropyltrimethoxysiane as a co-precursor, tetramethylammonium hydroxide (TMAH) as a catalyst, polyvinylpyrrolidone (PVP) and sodium lignosulfonat as co-stabilizers and PS latex as a hard template.
View Article and Find Full Text PDFFertilizer is very important for increasing food yield, but the extensive use of fertilizer will cause environmental pollution. To enhance the effectiveness of fertilizer, we developed the double organic silicone-modified recycled-oil-based polyurethane as a coating material to prepare degradable polymer coating urea for constant fertilizer release. The moisture, heat resistance, and sustained release properties of polyurethane coating materials were investigated by modification with hydroxyl-terminated polydimethyl silicone (HTPMS) and γ-Aminopropyl triethoxy silane (KH550).
View Article and Find Full Text PDF