Plant Physiol
December 2024
MYB family transcription factors (TFs) play crucial roles in plant development, metabolism, and responses to various stresses. However, whether MYB TFs are involved in regulating fatty acid biosynthesis in seeds remains largely elusive. Here, we demonstrated that transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing MYB73 exhibit altered FATTY ACID ELONGATION1 (FAE1) expression, seed oil content, and seed fatty acid composition.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Flexible surface-enhanced Raman scattering (SERS) substrates that provide simple sampling are helpful for the on-site detection of explosive contamination, pesticide residues on food surfaces, and water pollution in public spaces. Using superhydrophobic nanocellulose-based film as the support, 2D flexible SERS substrates that integrated sampling, enrichment, and detection were successfully fabricated via the solvent-induced evaporation method. This approach enabled the co-loading of two plasmonic nanoparticles with different sizes and shapes.
View Article and Find Full Text PDFRecently, metal-organic frameworks (MOFs) have been widely developed due to the rich porosity, excellent framework structure and multifunctional nature. Meanwhile, a series of MOFs crystals and MOF-based composites have been emerged. However, the widespread applications of MOFs are hindered by challenges such as rigidity, fragility, solution instability, and processing difficulties.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
November 2023
Introduction: Three nomograms for predicting the outcomes of early- and late-onset colon cancer (COCA) among patients not stratified by age were constructed using data in the Epidemiology and End Results (SEER) database (1975-2019). The accuracy of the nomogram was then assessed.
Method: Clinical data of 6107 patients with COCA were obtained from the SEER database.
Transcriptional regulation mediated by combinatorial interaction of transcription factors (TFs) is a key molecular mechanism modulating plant development and metabolism. Basic leucine zipper (bZIP) TFs play important roles in various plant developmental and physiological processes. However, their involvement in fatty acid biosynthesis is largely unknown.
View Article and Find Full Text PDFShort-term starvation (STS) during chemotherapy can block the nutrient supply to tumors and make tumor cells much more sensitive to chemotherapeutic drugs than normal cells. However, because of the diversity of starvation methods and the heterogeneity of tumors, this method's specific effects and mechanisms for chemotherapy are still poorly understood. In this study, we used HeLa cells as a model for short-term starvation and etoposide (ETO) combined treatment, and we also mimicked the short-term starvation effect by knocking down the glycolytic enzyme GAPDH to explore the exact molecular mechanism.
View Article and Find Full Text PDFVegetable oils are not only major components of human diet but also vital for industrial applications. WRINKLED1 (WRI1) is a pivotal transcription factor governing plant oil biosynthesis, but the underlying DNA-binding mechanism remains incompletely understood. Here, we resolved the structure of Arabidopsis WRI1 (AtWRI1) with its cognate double-stranded DNA (dsDNA), revealing two antiparallel β sheets in the tandem AP2 domains that intercalate into the adjacent major grooves of dsDNA to determine the sequence recognition specificity.
View Article and Find Full Text PDFPlants produce and accumulate triacylglycerol (TAG) in their seeds as an energy reservoir to support the processes of seed germination and seedling development. Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use. TAG biosynthesis consists of two major steps: de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum.
View Article and Find Full Text PDFTissue engineering has made significant progress as a cartilage repair alternative. It is crucial to promote cell proliferation and migration within three-dimensional (3D) bulk scaffolds for tissue regeneration through either chemical gradients or physical channels. In this study, by developing optimized silk fiber-based composite scaffolds, millimeter-scaled channels were created in the corresponding scaffolds via facile physical percussive drilling and subsequently utilized for auricular cartilage regeneration.
View Article and Find Full Text PDFAuxin is a well-studied phytohormone, vital for diverse plant developmental processes. The genes are one of the major auxin responsive genes, whose expression changes lead to modulation of plant development and auxin homeostasis. However, the transcriptional regulation of these genes remains largely unknown.
View Article and Find Full Text PDFDesigning clinical applicable polymeric composite scaffolds for auricular cartilage tissue engineering requires appropriate mechanical strength and biological characteristics. In this study, silk fiber-based scaffolds co-reinforced with poly-L-lactic acid porous microspheres (PLLA PMs) combined with either Bombyx mori (Bm) or Antheraea pernyi (Ap) silk fibers were fabricated as inspired by the "steel bars reinforced concrete" structure in architecture and their chondrogenic functions were also investigated. We found that the Ap silk fiber-based scaffolds reinforced by PLLA PMs (MAF) exhibited superior physical properties (the mechanical properties in particular) as compared to the Bm silk fiber-based scaffolds reinforced by PLLA PMs (MBF).
View Article and Find Full Text PDFMicrotia, frequently encountered in plastic surgery practice, is usually corrected by auricular reconstruction with prostheses or autologous cartilages. In recent decades, however, cartilage tissue engineering has been emerging as a promising alternative for its minimal invasion and low immunogenicity. As a critical factor for tissue engineering, scaffolds are expected to be sufficiently porous and stiff to facilitate chondrogenesis.
View Article and Find Full Text PDFPolymeric particles with non-spherical shape or coarse surface have distinct advantages for drug delivery, tissue regeneration and immunomodulation respectively, but it is not easy to control polymeric microparticles in required geometry and surface texture simultaneously. In this study, polymeric non-spherical microparticles with coarse surface were successfully prepared by double emulsion-solvent evaporation technique in the presence of ammonium bicarbonate and the formation mechanism was proposed. In addition, simvastatin was encapsulated in poly[lactic-co-(glycolic acid)] (PLGA) non-spherical microparticles with coarse surface by the same technique and the release kinetics in vitro was fitted as well, which not only enrich the encapsulation techniques of liposoluble drugs in polymeric non-spherical carriers but also envision the potential application for alveolar ridge preservation with local delivery of simvastatin.
View Article and Find Full Text PDFPlant Signal Behav
November 2020
The plant-specific TCP transcription factors play pivotal roles in various processes of plant growth and development. However, little is known regarding the functions of TCPs in plant oil biosynthesis. Our recent work showed that TCP4 mediates oil production via interaction with WRINKLED1 (WRI1), an essential transcription factor governing plant fatty acid biosynthesis.
View Article and Find Full Text PDFThe local drug delivery systems play an important role in treating sudden sensorineural hearing loss. In this work, we synthesized dexamethasone microcrystals (DEX MCs) using precipitation technique followed by silk coating via layer-by-layer assembly. Compared to raw DEX, the physicochemical properties including shape, crystal form, dispersity, dissolution or sustained release, of DEX MCs or poly-l-lysine/silk fibroin (PLL/SF) multilayers-coated DEX MCs (DEX-(PLL/SF)) were investigated.
View Article and Find Full Text PDFMost plant species generate and store triacylglycerol (TAG) in their seeds, serving as a core supply of carbon and energy to support seedling development. Plant seed oils have a wide variety of applications, from being essential for human diets to serving as industrial renewable feedstock. WRINKLED1 (WRI1) transcription factor plays a central role in the transcriptional regulation of plant fatty acid biosynthesis.
View Article and Find Full Text PDFProteolysis of mutant huntingtin is crucial to the development of Huntington disease (HD). Specifically preventing proteolysis at the capase-6 (C6) consensus sequence at amino acid 586 of mutant huntingtin prevents the development of behavioural, motor and neuropathological features in a mouse model of HD. However, the mechanism underlying the selective toxicity of the 586 amino acid cleavage event is currently unknown.
View Article and Find Full Text PDFMutations in the ALS2 gene, which encodes alsin, cause autosomal recessive juvenile-onset amyotrophic lateral sclerosis (ALS2) and related conditions. Using both a novel monoclonal antibody and LacZ knock-in mice, we demonstrate that alsin is widely expressed in neurons of the CNS, including the cortex, brain stem and motor neurons of the spinal cord. Interestingly, the highest levels of alsin are found in the molecular layer of the cerebellum, a brain region not previously implicated in ALS2.
View Article and Find Full Text PDFAn expanded CAG repeat is the underlying genetic defect in Huntington disease, a disorder characterized by motor, psychiatric and cognitive deficits and striatal atrophy associated with neuronal loss. An accurate animal model of this disease is crucial for elucidation of the underlying natural history of the illness and also for testing experimental therapeutics. We established a new yeast artificial chromosome (YAC) mouse model of HD with the entire human HD gene containing 128 CAG repeats (YAC128) which develops motor abnormalities and age-dependent brain atrophy including cortical and striatal atrophy associated with striatal neuronal loss.
View Article and Find Full Text PDFATP binding cassette transporter A1 (ABCA1) is a widely expressed lipid transporter essential for the generation of HDL. ABCA1 is particularly abundant in the liver, suggesting that the liver may play a major role in HDL homeostasis. To determine how hepatic ABCA1 affects plasma HDL cholesterol levels, we treated mice with an adenovirus (Ad)-expressing human ABCA1 under the control of the cytomegalovirus promoter.
View Article and Find Full Text PDFMutations in ABCA1 uniformly decrease plasma HDL-cholesterol (HDL-C) and reduce cholesterol efflux, yet different mutations in ABCA1 result in different phenotypic effects in heterozygotes. For example, truncation mutations result in significantly lower HDL-C and apoliprotein A-I (apoA-I) levels in heterozygotes compared with nontruncation mutations, suggesting that truncation mutations may negatively affect the wild-type allele. To specifically test this hypothesis, we examined ABCA1 protein expression in response to 9-cis-retinoic acid (9-cis-RA) and 22-R-hydroxycholesterol (22-R-OH-Chol) in a collection of human fibroblasts representing eight different mutations and observed that truncation mutations blunted the response to oxysterol stimulation and dominantly suppressed induction of the remaining full-length allele to 5-10% of wild-type levels.
View Article and Find Full Text PDFHuntington's disease (HD) results from polyglutamine expansion in huntingtin (htt), a protein with several consensus caspase cleavage sites. Despite the identification of htt fragments in the brain, it has not been shown conclusively that htt is cleaved by caspases in vivo. Furthermore, no study has addressed when htt cleavage occurs with respect to the onset of neurodegeneration.
View Article and Find Full Text PDFMutations in ABCA1 cause the allelic disorders familial hypolipoproteinemia and Tangier Disease. To identify where ABCA1 was likely to have a functional role, we determined the cellular and tissue-specific patterns of murine ABCA1 expression. RT-PCR and Western blot analysis on dissected murine tissues demonstrated broad expression of ABCA1 mRNA and protein in many tissues with prominent protein expression in liver, testis, and adrenal tissue.
View Article and Find Full Text PDF