Publications by authors named "Yuzhou Jiao"

Article Synopsis
  • Vaccine efficacy is influenced by both antigens and adjuvants, which enhance immune responses; however, current adjuvants don't effectively work with live attenuated viruses.
  • Researchers developed a recombinant virus (WH2020-ΔTK/gI/gE-G-CSF) that expresses feline G-CSF, demonstrating similar growth patterns to its predecessor and improving immune responses.
  • Kittens vaccinated with the G-CSF-expressing virus produced more neutralizing antibodies and neutrophils, leading to milder clinical symptoms after FHV-1 infection, highlighting G-CSF's potential as an immune booster for live vaccines.
View Article and Find Full Text PDF

Feline infectious peritonitis (FIP) is a fatal feline disease. At present, the reference standard for FIP diagnosis is immunohistochemistry (IHC) of organs, but this method involves high time-related costs, invasive sampling procedures and professional requirements. Serological detection is a common auxiliary method for diagnosing diseases.

View Article and Find Full Text PDF

Feline parvovirus (FPV) infection is highly fatal in felines. NS1, which is a key nonstructural protein of FPV, can inhibit host innate immunity and promote viral replication, which is the main reason for the severe pathogenicity of FPV. However, the mechanism by which the NS1 protein disrupts host immunity and regulates viral replication is still unclear.

View Article and Find Full Text PDF

Recently, herpesvirus viral vectors that stimulate strong humoral and cellular immunity have been demonstrated to be the most promising platforms for the development of multivalent vaccines, because they contain various nonessential genes and exhibit long-life latency characteristics. Previously, we showed that the feline herpesvirus-1 (FHV-1) mutant WH2020-ΔTK/gI/gE, which was safe for felines and provided efficacious protection against FHV-1 challenge, can be used as a vaccine vector. Moreover, previous studies have shown that the major neutralizing epitope VP2 protein of feline parvovirus (FPV) can elicit high levels of neutralizing antibodies.

View Article and Find Full Text PDF
Article Synopsis
  • Feline calicivirus (FCV) is a major pathogen in cats, causing upper respiratory diseases and potentially serious systemic issues from highly virulent strains.
  • Current treatment options for FCV are limited, highlighting the urgent need for effective antiviral drugs.
  • Research identified handelin from traditional Chinese medicine as a promising compound that inhibits FCV replication by targeting heat shock protein 70 (HSP70), suggesting it could be a viable treatment option and a new drug target.
View Article and Find Full Text PDF

A standing puzzle in electrochemistry is that why the metal-nitrogen-carbon catalysts generally exhibit dramatic activity drop for oxygen reduction when traversing from alkaline to acid. Here, taking FeCo-N-C double-atom catalyst as a model system and combining the ab initio molecular dynamics simulation and in situ surface-enhanced infrared absorption spectroscopy, we show that it is the significantly distinct interfacial double-layer structures, rather than the energetics of multiple reaction steps, that cause the pH-dependent oxygen reduction activity on metal-nitrogen-carbon catalysts. Specifically, the greatly disparate charge densities on electrode surfaces render different orientations of interfacial water under alkaline and acid oxygen reduction conditions, thereby affecting the formation of hydrogen bonds between the surface oxygenated intermediates and the interfacial water molecules, eventually controlling the kinetics of the proton-coupled electron transfer steps.

View Article and Find Full Text PDF

Structures of the electric double layer (EDL) at electrocatalytic interfaces, which are modulated by the material properties, the electrolyte characteristics (e.g., the pH, the types and concentrations of ions), and the electrode potential, play crucial roles in the reaction kinetics.

View Article and Find Full Text PDF

Feline herpesvirus-1 (FHV-1) is the aetiological agent of feline viral rhinotracheitis, which accounts for approximately 50 % of all viral upper respiratory diseases in cats. Commercially available modified live vaccines containing FHV-1 are generally safe and effective, but these FHV-1 vaccines retain full virulence genes and can establish latency and reactivate to cause infectious rhinotracheitis in vaccine recipients, raising safety concerns. To address this shortcoming, we constructed a novel TK/gI/gE -gene-deleted recombinant FHV-1 (WH2020-ΔTK/gI/gE) through CRISPR/Cas9-mediated homologous recombination.

View Article and Find Full Text PDF

The receptor binding domain (RBD) of the coronavirus spike protein (S) has been verified to be the main target for potent neutralizing antibodies (nAbs) in most coronaviruses, and the N-terminal domain (NTD) of some betacoronaviruses has also been indicated to induce nAbs. For alphacoronavirus HCoV-229E, its RBD has been shown to have neutralizing epitopes, and these epitopes could change over time. However, whether neutralizing epitopes exist on the NTD and whether these epitopes change like those of the RBD are still unknown.

View Article and Find Full Text PDF