Publications by authors named "Yuzheng Xia"

Radiophotothermal therapy is a promising treatment for superficial tumors. Traditional radiotherapy requires tissue boluses on the patient's skin to increase therapeutic effectiveness due to the dose-buildup effect of high-energy radiation. However, combining radiotherapy with photothermal therapy leads to uncertainties as the low-penetration near-infrared light dose is reduced after penetrating the bolus.

View Article and Find Full Text PDF

Stimuli-responsive hybrid nanoparticles used for controllable catalysis have been attracting increasing attention. This study aims to prepare hybrid microgels with excellent temperature-sensitive colorimetric and catalytic properties through combining the surface plasmon resonance properties of gold nanoparticles (AuNPs) with the temperature-sensitive properties of poly(-isopropylacrylamide) (PNIPAM)-based microgels. Microgels with hydroxy groups (MG-OH) were prepared by soap-free emulsion polymerization, using -isopropylacrylamide as the main monomer, hydroxyethyl methylacrylate as the functional monomer, ,'-methylene bisacrylamide as the crosslinker, and 2,2'-azobis(2-methylpropionamidine) dihydrochloride as an initiator to ensure the microgels are positively charged.

View Article and Find Full Text PDF

Green and environment-friendly preparation are of the utmost relevance to the development of transparent antismudge coatings. To prepare a waterborne polyurethane (WPU) coating with antismudge property, it is challenging to balance the stability of dispersion and the antismudge property of coating. Herein, we prepare a transparent bio-based WPU coating grafted with a minor proportion of poly(dimethylsiloxane) (WPU--PDMS) using renewable castor oil, monocarbinol-terminated PDMS, hexamethylene diisocyanate trimer, and 2,2-bis(hydroxymethyl)propionic acid as raw materials.

View Article and Find Full Text PDF

Polylactide--poly(-isopropylacrylamide)--polystyrene (PLA--PNIPAM--PS) triblock copolymers (tri-BCPs) with various chemical compositions (block ratio) were prepared from the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. Subsequently, the self-assembling behaviors of these tri-BCP films obtained from spin-coating were investigated by annealing them under different solvent atmosphere. We found that these films could self-assemble into various morphologies due to the microphase separation of incompatible copolymer blocks.

View Article and Find Full Text PDF

Advanced liquid-repelling materials that resist both water-based and oil-based contaminants have significant applications in many fields. Herein, a novel protocol for the fabrication of a robust poly(high internal phase emulsion) (polyHIPE)-based slippery liquid-infused porous surface (SLIPS) system with combined self-repairing and self-cleaning properties is developed. Specifically, polystyrene-based polyHIPE (PS-HIPE) membranes with an interconnected porous structure were prepared from polymerization of the continuous oil phase in the water-in-oil HIPE templates.

View Article and Find Full Text PDF

Curcumin-loaded poly (α-isobutyl cyanoacrylate) microspheres (Cur-HP-β-CD-PiBCA) were prepared by one-step emulsification with α-isobutyl cyanoacrylate as materials, poloxamer 188 as emulsifier, and curcumin complex with hydroxypropyl-β-cyclodextrin (Cur-HP-β-CD) as drug prepared by kneading method. Effects of emulsifier and drug concentration on microspheres size and distribution, drug loading and encapsulation efficiency were investigated in detail. And the curcumin release of drug-loaded microspheres was also studied.

View Article and Find Full Text PDF

In this work, polylactide-b-poly(N-isopropylacrylamide) were synthesized by the combination of controlled ring-opening polymerization and reversible addition fragmentation chain transfer polymerization. These block copolymers with molecular weight range from 7,900 to 12,000 g/mol and narrow polydispersity (≤1.19) can self-assemble into micelles (polylactide core, poly(N-isopropylacrylamide) shell) in water at certain temperature range, which have been evidenced by laser particle size analyzer proton nuclear magnetic resonance and transmission electron microscopy.

View Article and Find Full Text PDF

Poly (acrylic ester) hydrogel materials were widely used in intraocular lens and contact lens because of their excellent optical performance and biocompatibility. In this paper, the bulk copolymerization behavior of hydrophilic hydroxyethyl methacrylat with hydrophobic methyl metharylate was studied; and the optical performance, calcium deposits, equilibrium water content of polymers and its hydrogels obtained by different ratios of monomers were systematically investigated. The experimental results showed that the average light transmittance and the equilibrium water content of the obtained hydrogels increased with the increasing of the hydrophilic monomer content from 0 to 100%; however, the hardness decreased.

View Article and Find Full Text PDF