Nutrient loading is a major driver of seagrass ecosystem decline and also threatens the capacity for seagrass ecosystems to act as 'blue carbon' sinks. Dissolved organic carbon (DOC) represents a crucial component of carbon storage in seagrass ecosystems, with refractory DOC (RDOC) playing a key role in long-term (millennial time scale) carbon stocks. The processes governing RDOC are heavily influenced by microbial activity.
View Article and Find Full Text PDFHigh coastal nutrient loading can cause changes in seagrass chemistry traits that may lead to variability in seagrass litter decomposition processes. Such changes in decomposition have the potential to alter the carbon (C) sequestration capacity within seagrass meadows ('blue carbon'). However, the external and internal factors that drive the variability in decomposition rates of the different organic matter (OM) types of seagrass are poorly understood, especially recalcitrant OM (i.
View Article and Find Full Text PDFSeagrass meadows are globally recognized as critical natural carbon sinks, commonly known as 'blue carbon'. However, seagrass decline attributed to escalating human activities and climate change, significantly influences their carbon sequestration capacity. A key aspect in comprehending the impact of seagrass decline on carbon sequestration is understanding how degradation affects the stored blue carbon, primarily consisting of sediment organic carbon (SOC).
View Article and Find Full Text PDFAnthropogenic activities and natural erosion caused abundant influx of heavy metals (HMs) and organic matter (OM) into estuaries characterized by the dynamic environments governed by tidal action and river flow. Similarities and differences in the fate of HM and OM as well as the influences of OM on HMs remain incomplete in estuaries with seasonal human activity and hydrodynamic force. To address this gap, dissolved HMs (dHMs) and fluorescence dissolved OM (FDOM) were investigated in the Pearl River Estuary, a highly seasonally anthropogenic and dynamic estuary.
View Article and Find Full Text PDFSeagrass beds are susceptible to deterioration and heavy metals represent a crucial impact factor. The accumulation of heavy metal in two tropical seagrass species were studied in South China in this study and multiple methods were used to identify the heavy metal sources. E.
View Article and Find Full Text PDFSeagrass ecosystems have received a great deal of attention for contributing to uptake of atmospheric CO, and thereby helping to mitigate global climate change ('blue carbon'). Carbon budgets for seagrass ecosystems are developed by estimating air-sea CO fluxes. Data for air-sea CO flux for tropical seagrass ecosystems are lacking, which is problematic for constraining global seagrass carbon budgets.
View Article and Find Full Text PDFIn this study, we investigated the taxonomic composition of the bacteria and phytoplankton communities in the Pearl River Estuary (PRE) through Illumina sequencing of the V3-V4 region of the 16 S rRNA gene. Furthermore, their relationships as well as recorded environmental variables were explored by co-occurrence networks. Bacterial community composition was different in two size fractions, as well as along the salinity gradient across two seasons.
View Article and Find Full Text PDFThe mixing processes of fresh-salt water in estuarine and coastal regions have a substantial impact on the characteristics of heavy metals. A study was conducted in the Pearl River Estuary (PRE), located in South China, to examine the distribution and partitioning of heavy metals and the factors that influence their presence. Results showed that the hydrodynamic force, caused by the landward intrusion of the salt wedge, was the major contributor to the aggregation of heavy metals in the northern and western PRE.
View Article and Find Full Text PDF