This paper focuses on the research background of zeolite-based photocatalytic materials, the role of zeolites in photocatalytic materials, and their application in various fields. It focuses on the critical roles of zeolites in photocatalytic materials and their application prospects. It outlines the mechanisms of zeolites in different photocatalytic materials, including adsorption, structural stabilization, domain-limiting, electric field, catalysis, ion exchange, shape-selective, and solvation, which elucidates the potential advantages of zeolites in photocatalytic materials.
View Article and Find Full Text PDFDesigning efficient, scalable, and eco-friendly recycling technologies is crucial for addressing the widespread decommissioning of spent lithium-ion batteries. Here, an innovative top-down regeneration method is introduced to rejuvenate highly degraded LiFePO. Initially, the crystal structure of spent LiFePO is destroyed via the oxidation process, followed by the reconstruction of the LiFePO lattice through the reduction process.
View Article and Find Full Text PDFThe liquid-phase method is the most commonly utilized strategy for synthesizing fluorescent carbon quantum dots (CQDs). However, the liquid-phase synthesis of CQDs faces challenges such as low yield, complex purification, and the use of toxic solvents, which limit large-scale production and practical applications. In this study, fluorescent CQDs with a high product yield of 78% were synthesized using glucose as a carbon source through a green and facile one-step solid-phase approach, without solvents or post-treatment.
View Article and Find Full Text PDFHematoma and secondary neuroinflammation continue to pose a significant challenge in the clinical treatment of intracerebral hemorrhage (ICH). This study describes a nanoregulator formed through the self-assembly of Mg and signal regulatory protein α (SIRPα) DNAzyme (SDz), aimed at enhancing hematoma resolution and inhibiting neuroinflammation in the treatment of ICH. The structure of SDz collapses in response to the acidic endo/lysosomal microenvironment of microglia, releasing Mg and the SIRPα DNAzyme.
View Article and Find Full Text PDFFollowing publication, concerns were raised regarding the peer-review process related to the publication of this article [...
View Article and Find Full Text PDFSince the product contains no carbon-based substances and can be driven by non-carbon-based electricity, electrocatalytic water splitting is considered to be among the most effective strategies for alleviating the energy crisis and environmental pollution. This process helps lower greenhouse gas emissions while also supporting the shift toward renewable energy sources. The anodic oxygen evolution reaction (OER) involves a more complex multi-electron transfer process, which is the principal limiting factor in overall water splitting.
View Article and Find Full Text PDFExcessive infiltration of neutrophil and inflammatory cytokines accumulation as well as the inadequate delivery of drugs to the targeted site are key pathological cascades in multiple sclerosis (MS). Herein, inflammation-targeting biomimetic nano-decoys (TFMN) is developed that inhibit the infiltration of immune cells and effectively deliver glucocorticoids to lesions for enhanced MS treatment. Nano-decoys encapsulated with the glucocorticoid methylprednisolone (MPS) are prepared by coating neutrophil membrane (NM) on nanoparticles formed by the self-assembly of tannic acid and poloxamer188/pluronic68.
View Article and Find Full Text PDFA novel ()-1-(4-methylbenzylidene)-4-(3-isopropylphenyl) thiosemicarbazone was synthesized in a one-pot four-step synthetic route. Fourier transform infrared spectroscopy (FTIR), H and C nuclear magnetic resonances (NMR), single-crystal X-ray diffraction, and UV-visible absorption spectroscopy were utilized to confirm the successful preparation of the title compound. Single-crystal data indicated that the intramolecular hydrogen bond N(3)-H(3)···N(1) and intermolecular hydrogen bond N(2)-H(2)···S(1) (1 - x, 1 - y, 1 - z) existed in the crystal structure and packing of the title compound.
View Article and Find Full Text PDFBackground: Reports on coronavirus disease 2019 (COVID-19) in neonates are limited, especially in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) Omicron variant. This study aims to analyze the clinical characteristics and identify risk factors associated with severe COVID-19 in neonates infected with Omicron variant.
Methods: The study population was represented by neonates with COVID-19, who were admitted to The Affiliated Children's Hospital of Xi'an Jiaotong University in northwest China, from December 10, 2022 to January 20, 2023.
The reverse-mode smart windows, which usually fabricated by polymer stabilized liquid crystal (PSLC), are more practical for scenarios where high transparency is a priority for most of the time. However, the polymer stabilized cholesteric liquid crystal (PSCLC) film exhibits poor spacing stability due to the mobility of CLC molecules during the bending deformation. In this work, a reverse-mode PSCLC flexible film with excellent bending resistance was fabricated by the construction of polymer spacer columns.
View Article and Find Full Text PDFIn order to facilitate the practical application of circularly polarized luminescence (CPL) active molecules, the CPL brightness () must be optimized. We have applied a binary modular strategy to synthesize two chiral organo-Tb complexes, [Tb(Coum)(1,2-Ph-PyBox)] () and [Tb(Coum)(1,2-Ph-PyBox)] (), combining 3-acetyl-4-hydroxy-coumarin () and enantiopure 2,6-bis(4-phenyl-2-oxazolin-2-yl) pyridine (,/,). The photophysical properties of these novel complexes have been fully characterized.
View Article and Find Full Text PDFInt J Neural Syst
November 2024
Since the spiking neural P system (SN P system) was proposed in 2006, it has become a research hotspot in the field of membrane computing. The SN P system performs computations through the encoding, processing, and transmission of spiking information and can be regarded as a third-generation neural network. As a variant of the SN P system, the global asynchronous numerical spiking neural P system (ANSN P system) is adaptable to a broader range of application scenarios.
View Article and Find Full Text PDFPesticide residues in soil, especially multiple herbicide residues, cause a series of adverse effects on soil properties and microorganisms. In this work, the degradation of three herbicides and the effect on bacterial communities under combined pollution was investigated. The experimental results showed that the half-lives of acetochlor and prometryn significantly altered under combined exposure (5.
View Article and Find Full Text PDFVinyl-bearing triazine-functionalized covalent organic frameworks (COFs) have emerged as promising materials for electrocatalysis and energy storage. Guided by density functional theory calculations, a vinyl-enriched COF (VCOF-1) featuring a donor-acceptor structure was synthesized based on the Knoevenagel reaction. Moreover, the VCOF-1@Ru without pyrolysis was obtained through chemical coordination interactions between VCOF-1 and RuCl, exhibiting enhanced electrocatalytic performance in the hydrogen evolution reaction when exposed to 0.
View Article and Find Full Text PDFSpiking neural membrane systems (or spiking neural P systems, SNP systems) are a new type of computation model which have attracted the attention of plentiful scholars for parallelism, time encoding, interpretability and extensibility. The original SNP systems only consider the time delay caused by the execution of rules within neurons, but not caused by the transmission of spikes via synapses between neurons and its adaptive adjustment. In view of the importance of time delay for SNP systems, which are a time encoding computation model, this study proposes SNP systems with adaptive synaptic time delay (ADSNP systems) based on the dynamic regulation mechanism of synaptic transmission delay in neural systems.
View Article and Find Full Text PDFTo improve the mess-specific activity of Co supported on zeolite catalysts in Fischer-Tropsch (FT) synthesis, the Co-MCM-22 catalyst was prepared by simply grinding the MCM-22 with nanosized CoO prefabricated by the thermal decomposition of the Co(II)-glycine complex. It is found that this novel strategy is effective for improving the mess-specific activity of Co catalysts in FT synthesis compared to the impregnation method. Moreover, the ion exchange and calcination sequence of MCM-22 has a significant influence on the dispersion, particle size distribution, and reduction degree of Co.
View Article and Find Full Text PDFApplying molecular design to chiral organo-Zn complexes, a new pair of chiral heteroleptic -pyrazolonate-Zn enantiomers [Zn(PMBP)(1,2-Chxn)] (R,R-Zn2+; HPMBP = 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and 1R,2R-Chxn = (1,2)-cyclohexane-1,2-diamine) and [Zn(PMBP)(1,2-Chxn)] (S,S-Zn2+; 1S,2S-Chxn = (1,2)-cyclohexane-1,2-diamine) have been synthesized and characterized in terms of photophysical and thermodynamic properties. In addition to a small Flack parameter (0.05(3)) associated with the solid-state elucidation of S,S-Zn2+, the circular dichroism (CD) and circularly polarized light (CPL) spectra for the chiral Zn enantiomers show perfect mirror symmetry, establishing that the enantiopure 1,2-diamines successfully induce the optical isomerism of R,R-Zn2+ and S,S-Zn2+.
View Article and Find Full Text PDFUsing the polymerization-induced phase separation (PIPS) method, bilayer polymer-dispersed liquid crystal (PDLC) films with a PDLC-PVA-PDLC structure were prepared in this work. It was found that all PDLC performance indexes were affected by polymer mesh size after comparing the microscopic morphology and electro-optical properties of samples with different monomer ratios. GdO nanoparticles and rhodamine B base fluorescent dyes introduced into the bilayer PDLC optimized the samples' electro-optical properties and developed new functionalities.
View Article and Find Full Text PDFThe realization of multifunctional advanced displays with better electro-optical properties is especially crucial at present. However, conventional integral full drive-based transparent display is increasingly failing to meet the demands of the day. Herein, partitioned polymerization as a novel preparation method was introduced innovatively into polymer-dispersed liquid crystals (PDLC) for realizing a step-driven display in agreement with fluorescent dye to solve the above drawback.
View Article and Find Full Text PDFPrecise and efficient regulation of microglia is vital for ischemic stroke therapy and prognosis. The infiltration of neutrophils into the brain provides opportunities for regulatory drugs across the blood-brain barrier, while hindered by neutrophil extracellular traps (NETs) and targeted delivery of intracerebral drugs to microglia. This study reports an efficient neutrophil hijacking nanoplatform (referred to as APTS) for targeted A151 (a telomerase repeat sequence) delivery to microglia without the generation of NETs.
View Article and Find Full Text PDFIt is significant to tailor multifunctional electrode materials for storing sustainable energy in lithium-sulfur (Li-S) batteries and converting intermittent solar energy into H, facilitated by electricity. In this context, COF-1@CNT obtained through interfacial interaction fulfilled both requisites via post-functionalization. Upon integrating COF-1@CNT with S as the cathode for Li-S batteries, the system exhibited an initial discharge capacity of 1360 mAh g.
View Article and Find Full Text PDFConventional 3D organic-inorganic halide perovskite materials have shown substantial potential in the field of optoelectronics, enabling the power conversation efficiency of solar cells beyond 26%. A key challenge limiting the further commercial application of 3D perovskite solar cells is their inherent instability over outer oxygen, humidity, light, and heat. By contrast, 2D Ruddlesden-Popper (2DRP) perovskites with bulky organic cations can effectively stabilize the inorganic slabs, yielding excellent environmental stability.
View Article and Find Full Text PDF