Peroxynitrite (ONOO) is a reactive oxygen species (ROS) that takes part in the oxidation-reduction homeostasis while at the same time being responsible for activating numerous pathological pathways. Accordingly, monitoring the dynamic changes in ONOO concentration has attracted a great deal of attention, undoubtedly prompting the development of appropriate fluorescent chemosensors. Herein, we developed a novel N,O-chelated diphenylboron-based fluorescent probe (DPB) for ONOO featuring high selectivity, a quick response time (2.
View Article and Find Full Text PDFPsoriasis is an autoimmune inflammation-related disease accompanied by a variety of complications. Reactive oxygen species (ROS) are modulators of inflammation, and their excessive production caused by oxidative/anti-oxidative imbalance has been observed in psoriatic patients. Hypochlorous acid (HOCl) is a ROS produced by myeloperoxidase (MPO) from chloride ions (Cl) and hydrogen peroxide (HO).
View Article and Find Full Text PDFThe core-shell structure often exhibits unique properties, resulting in superior physical and chemical performance distinct from individual component in the field of photocatalysis. However, traditional prepared methods such as template synthesis and layer-by-layer self-assembly are relatively complex. Therefore, it is necessary to explore an efficient and expedient approach.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Endogenous hypochlorous acid (HOCl) is one of the most important reactive oxygen species (ROS) and acts as a distinct biomarker that is involved in various inflammatory responses including rheumatoid arthritis (RA). Therefore, it's crucial to develop an efficient method for the tracking and analysis of HOCl levels in vivo. Natural products continue to be compounds of interest, because they not only offer diverse and specific molecular scaffolds but also provide invaluable sources for new drug discovery.
View Article and Find Full Text PDFFerroptosis is a way of cell death mainly due to the imbalance between the production and degradation of lipid reactive oxygen species, which is closely associated with various diseases. Endogenous hypochlorous acid (HOCl) mainly produced in mitochondria is regarded as an important signal molecule of ferroptosis. Therefore, monitoring the fluctuation of endogenous HOCl is beneficial to better understand and treat ferroptosis-related diseases.
View Article and Find Full Text PDFCysteine (Cys) not only plays an indispensable role in maintaining the redox balance in organisms, but is also an important nutrient in the food industry. Fluorescence-based detection systems have emerged as an effective method to track the locations and concentrations of different species. To achieve efficient monitoring of Cys in both food samples and biological systems, a novel lipid droplet (LD) targeted fluorescent probe (namely NIT-Cys) was constructed for the turn-on detection of Cys, characterized by a large Stokes shift (142 nm), a short response time (<8 min), and a low Cys detection limit (39 nM).
View Article and Find Full Text PDFCysteine (Cys), one of essential small-molecule-based biothiols in the human body, contributes to the regulation of redox reactions and is closely associated with many physiological and pathological metabolic processes. Herein, a novel fluorescent probe, hydroxyphenyl-conjugated benzothiazole (HBT-Cys) capable of detecting Cys was constructed, where acrylate served as the recognition group and hydroxyphenyl-linked benzothiazole acted as the fluorophore. The fluorescence of the probe was negligible in the absence of Cys, and an intense blue fluorescence was observed upon addition of Cys.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2023
Fluorescence microscopy has proven to be a crucial powerful tool to specifically visualize cellular organelles. In-depth visualization of the structure of mitochondria in living cells is of great value to better understand their function. Herein, based on our experience in construction of fluorescent difluoroboronate anchored acylhydrazones (BOAHY) chromophores, we rationally designed a novel monoboron complex with a connected triphenylphosphonium moiety, and evaluated its spectroscopic properties, cytotoxicity and intracellular localization.
View Article and Find Full Text PDFNovel enzyme-triggerable cell penetrating peptide (ETCPP) dendrimers with a camptothecin (CPT) warhead were designed and synthesized based on an amphiphilic penetrating peptide (FKKFFRKLL, discovered by us before). Among the newly synthesized ETCPP dendrimer conjugates, BL_Oc-SS-CPT (a high-generation dendrimer) exhibited the highest activity with ICs in the nanomolar range (31-747 nM) against a panel of cancer cells, which is 3-10 times better than that of CPT. BL_Oc-SS-CPT remained intact during transit to target cells and in normal tissues with a plasma half-life of 4.
View Article and Find Full Text PDFA series of acridine and quinoline derivatives were designed and synthesized based on our previous work as novel tubulin inhibitors targeting the colchicine binding site. Among them, compound 3b exhibited the highest antiproliferative activity with an IC of 261 nM against HepG-2 cells (the most sensitive cell line). In addition, compound 3b was able to suppress the formation of HepG-2 colonies.
View Article and Find Full Text PDFRecognition and excretion of metal ions play an important role in the diagnosis and treatment of various diseases and poisoning. Although copper (Cu) is a cofactor of many key enzymes in the human body, its accumulation caused by genetic ATP7B mutation or environmental pollution can lead to hepatotoxicity, renal failure, Wilson's disease, inflammation, and even Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, in this work, a difluoroboron curcumin derivative (DF-Cur) was used for the specific recognition of copper ions (Cu).
View Article and Find Full Text PDFReactive oxygen species (ROS) have been implicated in numerous pathological processes and their homeostasis facilitates the dynamic balance of intracellular redox states. Among ROS, hypobromous acid (HOBr) has a high similarity to hypochlorous acid (HOCl) in both chemical and physical properties, whereas it has received relatively little attention. Meanwhile, selective recognition of endogenous HOBr suffers great challenges due to the fact that the concentration of this molecule is much lower than that of HOCl.
View Article and Find Full Text PDFA novel non-symmetric pillar[5]arene bearing triazole-linked 8-oxyquinolines at one rim was synthesized and demonstrated as a sequential fluorescence sensor for thorium(iv) followed by fluoride ions with high sensitivity and selectivity.
View Article and Find Full Text PDFA unique host-guest recognition process involving a new class of homoditopic CMPO-pillar[5]arenes and lanthanides was revealed to proceed in a stepwise manner, and correlated with the efficient separation of americium(III) and europium(III) under acidic feed conditions.
View Article and Find Full Text PDFPillar[5]arenes bearing ten phosphine oxide groups (1a-e), as analogs of their corresponding calix[4]arene-based phosphine oxide, have demonstrated intriguing recognition performance for some representative heavy metal cations including Co(2+), Cu(2+), Ni(2+), Zn(2+), Cd(2+), Pb(2+), Ag(2+) and Hg(2+) compared to their acyclic species (2a-e). Their extraction abilities toward these cations were evaluated by the solvent extraction method. The extraction results revealed that 1a-e were efficient and selective cation receptors for Hg(2+) over other selected cations.
View Article and Find Full Text PDFPillar[5]arenes, as a new intriguing class of calixarene analogues, were functionalized with ten diglycolamide (DGA) arms on both sides (rims) of the pillar framework and evaluated for their extraction behaviour towards Am(III) and Eu(III). These novel extractants exhibit excellent separation and extraction efficiency, suggesting its significant potential for nuclear waste remediation. Laser induced fluorescence experiments disclosed strong complexation of the trivalent metal ions with the pillararene-DGA ligands.
View Article and Find Full Text PDFTo understand intramolecular hydrogen bonding in effecting liquid-liquid extraction behavior of CMPO-calixarenes, three CMPO-modified calix[4]arenes (CMPO-CA) 5a-5c with hydrogen-bonded spacer were designed and synthesized. The impact of spacer rotation that is hindered by introduction of intramolecular hydrogen bonding upon extraction of La(3+), Eu(3+), Yb(3+), Th(4+), and UO2(2+) has been examined. The results show that 5b and 5c containing only one hydrogen bond with a less hindered rotation spacer extract La(3+) more efficiently than 5a containing two hydrogen bonds with a more hindered rotation spacer, demonstrating the importance of local rigidification of spacer in the design of extractants in influencing the coordination environment.
View Article and Find Full Text PDFThe quadruply hydrogen-bonded duplexes based on an imide-urea structure preorganized by three-center hydrogen bonds were found to associate via bifurcated hydrogen bonds. (1)H NMR dilution experiments revealed the high stability of the homodimer in apolar solvent (K(dim) > 10(5) M(-1) in CDCl(3)) and enhancement of association ability due to electron-withdrawing substituent effects. The ready synthetic availability and adjustable association affinity via electronic effects may render these association units potentially applicable in constructing supramolecular architectures.
View Article and Find Full Text PDF