Publications by authors named "Yuyin Fu"

CD25, also known as the interleukin-2 receptor α chain (IL-2Rα), is highly expressed on regulatory T cells (Tregs), but relatively lower on effector T cells (Teffs). This makes it a potential target for Treg depletion, which can be used in tumor immunotherapy. However, marketed anti-CD25 antibodies (Basiliximab and Daclizumab) were originally developed as immunosuppressive drugs to prevent graft rejection, because these antibodies can block IL-2 binding to CD25 on Teffs, which in turn destroys the function of Teffs.

View Article and Find Full Text PDF

Ovarian cancer is considered to be the most lethal gynecologic malignancy, and despite the development of conventional therapies and new therapeutic approaches, the patient's survival time remains short because of tumor recurrence and metastasis. Therefore, effective methods to control tumor progression are urgently needed. The oncofetal tumor-associated antigen 5T4 (trophoblast glycoprotein, TPBG) represents an appealing target for adoptive T-cell immunotherapy as it is highly expressed on the surface of various tumor cells, has very limited expression in normal tissues, and spreads widely in malignant tumors throughout their development.

View Article and Find Full Text PDF

Immune checkpoint inhibitors have achieved unprecedented success in cancer immunotherapy. However, the overall response rate to immune checkpoint inhibitor therapy for many cancers is only between 20 and 40%, and even less for colorectal cancer (CRC) patients. Thus, there is an urgent need to develop an efficient immunotherapeutic strategy for CRC.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a relatively safe and clinically promising treatment to combat primary tumors, especially epidermal carcinoma, while has negligible effects on distant metastasis. Therefore, this work reports a multifunctional nanosystem (HPR@CCP) exerting a combined photodynamic and immunotherapy to amplify the therapeutic effect on primary tumors and distant metastasis. Specifically, this nanosystem was obtained by electrostatic adsorption of a negatively charged hyaluronic acid "shell" with a positively charged "core" consisting of the CRISPR-Cas9 system targeting the Ptpn2 gene (Cas9-Ptpn2) and a modified mitochondria-targeting chlorin e6 (TPP-PEI-Ce6).

View Article and Find Full Text PDF

Cryptophycin-52 (CR52), a tubulin inhibitor, exhibits promising antitumor activity in vitro (picomolar level) and in mouse xenograft models. However, the narrow therapeutic window in clinical trials limits its further development. Antibody-drug conjugate (ADC), formed by coupling cytotoxic compound (payload) to an antibody via a linker, can deliver drug to tumor locations in a targeted manner by antibody, enhancing the therapeutic effects and reducing toxic and side effects.

View Article and Find Full Text PDF

DDR1 has been identified as a cancer-associated receptor tyrosine kinase that is highly expressed in several malignancies relative to normal tissues. Clinically approved multi-kinase inhibitors, such as nilotinib, inhibit DDR1-mediated tumor growth in xenograft models, suggesting DDR1 might be a potential target for cancer treatments. Here, we employed an antibody-based strategy with a novel anti-DDR1 antibody-drug conjugate (ADC) for colon carcinoma treatment.

View Article and Find Full Text PDF
Article Synopsis
  • 5T4, or trophoblast glycoprotein, was found to be highly expressed in gastric, colorectal, and pancreatic cancer, correlating with poor patient outcomes.
  • A new anti-5T4 monoclonal antibody was developed and linked to a potent drug (DM4), creating H6-DM4, which showed strong cancer-fighting capabilities in various GI cancer cell lines and mouse models.
  • H6-DM4 effectively targeted and eliminated colorectal cancer-initiating cells and cells resistant to platinum-based treatments, suggesting it could be a promising therapy for GI cancers.
View Article and Find Full Text PDF

Small cell lung cancer (SCLC) is of a highly invasive and metastatic lung cancer subtype and there had not been effective targeted therapies. CD56, a cell surface marker highly expressed on most SCLC, is a promising therapeutic target for treatment of this aggressive cancer. In this study, we generated a novel anti-CD56 antibody named promiximab, characterized by high affinity, internalization and tumor specificity.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) take the advantage of monoclonal antibodies to selectively deliver highly potent cytotoxic drugs to tumor cells, which have become a powerful measure for cancer treatment in recent years. To develop a more effective therapy for human epidermal growth factor receptor 2 (HER2)-positive cancer, we explored a novel ADCs composed of anti-HER2 scFv-HSA fusion antibodies conjugates with a potent cytotoxic drug DM1. The resulting ADCs, T-SA1-DM1 and T-SA2-DM1 (drug-to-antibody ratio in the range of 3.

View Article and Find Full Text PDF

Human desumoylating isopeptidase 2 (DESI-2) is a member of the DESI family and contains a conserved PPPDE1 domain. Previous studies have demonstrated that DESI-2 overexpression may induce cell apoptosis. In the present study, differentially expressed genes were analyzed using a transcription microarray in DESI-2 overexpressing PANC-1 pancreatic cancer cells.

View Article and Find Full Text PDF

Treatment for cancer can induce a series of secreted factors into the tumor microenvironment, which can affect cancer progression. Wingless-type MMTV (mouse mammary tumor virus) integration site 16B (WNT16B) is a new member of the WNT family and has been reported to play growth-related roles in previous studies. In this study, we found WNT16B could be expressed and secreted into the microenvironment by human ovarian fibroblasts after DNA damage-associated treatment, including chemotherapy drugs and radiation.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Yuyin Fu"

  • - Yuyin Fu's recent research primarily focuses on innovative cancer therapies, particularly utilizing antibody-drug conjugates (ADCs) and adoptive T-cell immunotherapy to enhance the effectiveness of treatment against various types of tumors, including ovarian, colorectal, and small cell lung cancers.
  • - The studies highlight the potential of targeting specific tumor-associated antigens, such as 5T4 and CD56, to improve therapeutic efficacy while minimizing side effects, showcasing a significant emphasis on precision medicine.
  • - Additionally, Fu's work explores novel combinations of immunotherapies with existing treatments, such as combining Foretinib with anti-PD-1 antibodies, and employing advanced technology like CRISPR-Cas9 for synergistic effects in cancer therapies.