A typographical error appeared in the title of the article "Mechanism of HSP90 Inhibitor in the Treatment of DSS-induced Colitis in Mice by Inhibiting MAPK Pathway and Synergistic Effect of Compound Sophora Decoction", published in Current Pharmaceutical Design, 2022; 28(42): 3456-3468 [1]. Details of the error and a correction are provided below. Original: Mechanism of HSP90 Inhibitor in the Treatment of DSS-induced Colitis in Mice by Inhibiting MAPK Pathway and Synergistic Effect of Compound Sophora Decoction Corrected: Mechanism of HSP90 Inhibitor in the Treatment of DSS-induced Colitis in Mice by Inhibiting MAPK Pathway and Synergistic Effect of Compound Sophorae Decoction We regret the error and apologize to readers.
View Article and Find Full Text PDFIntroduction: Ulcerative colitis (UC) is a refractory disease with complex pathogenesis, and its pathogenesis is not clear. The present study aimed to investigate the potential target and related mechanism of Compound Sophora Decoction (CSD) in treating UC.
Methods: A network pharmacology approach predicted the components and targets of CSD to treat UC, and cell and animal experiments confirmed the findings of the approach and a new target for CSD treatment of UC.
Background: Circular RNAs (circRNAs) are involved in the pathogenesis of many diseases through competing endogenous RNA (ceRNA) regulatory mechanisms.
Aim: To investigate a circRNA-related ceRNA regulatory network and a new predictive model by circRNA to understand the diagnostic mechanism of circRNAs in ulcerative colitis (UC).
Methods: We obtained gene expression profiles of circRNAs, miRNAs, and mRNAs in UC from the Gene Expression Omnibus dataset.
Macrophage-driven immune dysfunction of the intestinal mucosa is involved in the pathophysiology of ulcerative colitis (UC). Emerging evidence indicates that there is an elevation in miR-31-5p levels in UC, which is accompanied by a downregulation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) expression. Nevertheless, the precise influence of miR-31-5p on macrophage polarization and the integrity of the intestinal epithelial barrier in UC remains to be fully elucidated.
View Article and Find Full Text PDFUlcerative colitis (UC) is a chronic non-specific inflammatory bowel disease characterized by inflammation and ulcer formation of the intestinal mucosa. Due to its high recurrence rate, prolonged course, limited curative options, and significant impact on patients' quality of life, along with a notable potential for malignant transformation, UC is designated as a refractory global health challenge by the World Health Organization (WHO). The elucidation of the pathogenesis and therapeutic strategies for UC requires further in-depth investigation.
View Article and Find Full Text PDFAims: Gastrointestinal (GI) dysfunction, as a common peripheral-organ complication after traumatic brain injury (TBI), is primarily characterized by gut inflammation and damage to the intestinal mucosal barrier (IMB). Previous studies have confirmed that TongQiao HuoXue Decoction (TQHXD) has strong anti-inflammatory properties and protects against gut injury. However, few have reported on the therapeutic effects of TQHXD in a TBI-induced GI dysfunction model.
View Article and Find Full Text PDFUlcerative colitis (UC) is an inflammatory disease with a complex pathogenic mechanism. Mounting evidence suggests that UC pathogenesis is linked to excessive production of reactive oxygen species (ROS) and cellular DNA damage. Recent studies have shown that bone mesenchymal stem cells (BMSCs) mainly exert their therapeutic effects through paracrine exosomes, and oxygen concentration is extremely important to BMSCs and exosomes.
View Article and Find Full Text PDFBackground: The mechanism of Heat Shock Protein 90 (HSP90) in Ulcerative Colitis (UC) has been studied, and mitogenic-activated protein kinases (MAPK) also contribute to the pathogenesis of UC. However, the effect of the HSP90/MAPK pathway in UC is still unclear. Therefore, the mainstay of this research is to explore the mechanism of action of this pathway in UC.
View Article and Find Full Text PDF