Publications by authors named "Yuyi Chu"

As a double-stranded RNA-editing enzyme and an interferon-stimulated gene, double-stranded RNA-specific adenosine deaminase (ADAR1) suppresses interferon signaling and contributes to immunotherapy resistance. Suppression of ADAR1 overcomes immunotherapy resistance in preclinical models, but has not yet been translated to clinical settings. By conducting a screening of a subset of the FDA-approved drugs, we found that all-trans retinoic acid (ATRA, also known as tretinoin) caused ADAR1 protein degradation through ubiquitin-proteasome pathways and concomitantly increased PD-L1 expression in pancreatic and breast cancers.

View Article and Find Full Text PDF

Dysphagia is a pervasive health issue that impacts diverse demographic groups worldwide, particularly the elderly, stroke survivors, and those suffering from neurological disorders. This condition poses substantial health risks, including malnutrition, respiratory complications, and increased mortality. Additionally, it exacerbates economic burdens by extending hospital stays and escalating healthcare costs.

View Article and Find Full Text PDF

Malignant tumors have become one of the serious public health problems in human safety and health, among which the chest and abdomen diseases account for the largest proportion. Early diagnosis and treatment can effectively improve the survival rate of patients. However, respiratory motion in the chest and abdomen can lead to uncertainty in the shape, volume, and location of the tumor, making treatment of the chest and abdomen difficult.

View Article and Find Full Text PDF

Oxygen reduction reactions (ORRs) involve a multistep proton-coupled electron process accompanied by the conversion of the apodictic spin configuration. Understanding the role of spin configurations of metals in the adsorption and desorption of oxygen intermediates during ORRs is critical for the design of efficient ORR catalysts. Herein, a platinum-rare-earth-metal-based alloy catalyst, PtGd, is introduced to reveal the role of spin configurations in the catalytic activity of materials.

View Article and Find Full Text PDF

Nuclear epidermal growth factor receptor (EGFR) has been shown to be correlated with drug resistance and a poor prognosis in patients with cancer. Previously, we have identified a tripartite nuclear localization signal (NLS) within EGFR. To comprehensively determine the functions and underlying mechanism of nuclear EGFR and its clinical implications, we aimed to explore the nuclear export signal (NES) sequence of EGFR that is responsible for interacting with the exportins.

View Article and Find Full Text PDF

Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) exploit the concept of synthetic lethality and offer great promise in the treatment of tumors with deficiencies in homologous recombination (HR) repair. PARPi exert antitumor activity by blocking Poly(ADP-ribosyl)ation (PARylation) and trapping PARP1 on damaged DNA. To date, the U.

View Article and Find Full Text PDF

Catalyst/support interaction plays a vital role in catalysis towards acidic oxygen evolution (OER), and the performance reinforcement is currently interpreted by either strain or electron donation effect. We herein report that these views are insufficient, where the dynamic evolution of the interface under potential bias must be considered. Taking Nb O supported iridium (Ir/Nb O ) as a model catalyst, we uncovered the dynamic migration of oxygen species between IrO and Nb O during OER.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase (PARP) inhibitors have demonstrated promising clinical activity in multiple cancers. However, resistance to PARP inhibitors remains a substantial clinical challenge. In the present study, we report that anaplastic lymphoma kinase (ALK) directly phosphorylates CDK9 at tyrosine-19 to promote homologous recombination (HR) repair and PARP inhibitor resistance.

View Article and Find Full Text PDF

Unlabelled: Targeting immune checkpoints such as programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) has transformed cancer treatment, with durable clinical responses across a wide range of tumor types. However, a high percentage of patients fail to respond to anti-PD-1/PD-L1 treatment. A greater understanding of PD-L1 regulation is critical to improving the clinical response rate of PD-1/PD-L1 blockade.

View Article and Find Full Text PDF

Antibodies that target immune checkpoint proteins such as programmed cell death protein 1, programmed death ligand 1, and cytotoxic T-lymphocyte-associated antigen 4 in human cancers have achieved impressive clinical success; however, a significant proportion of patients fail to respond to these treatments. Galectin-9 (Gal-9), a β-galactoside-binding protein, has been shown to induce T-cell death and facilitate immunosuppression in the tumor microenvironment by binding to immunomodulatory receptors such as T-cell immunoglobulin and mucin domain-containing molecule 3 and the innate immune receptor dectin-1, suggesting that it may have potential as a target for cancer immunotherapy. Here, we report the development of two novel Gal-9-neutralizing antibodies that specifically react with the N-carbohydrate-recognition domain of human Gal-9 with high affinity.

View Article and Find Full Text PDF
Article Synopsis
  • EphA10, a receptor tyrosine kinase found mainly in the male testis, is linked to tumor growth and poor outcomes in several cancers, including triple-negative breast cancer (TNBC).
  • Researchers have developed monoclonal antibodies (mAbs) that specifically target EphA10, effectively identifying and targeting tumor regions without affecting other tissues.
  • In mouse models, these anti-EphA10 mAbs promoted tumor regression and improved immune response, suggesting that targeting EphA10 may offer a new treatment option for patients with EphA10-positive tumors.
View Article and Find Full Text PDF

Immunotherapy via PD-1/PD-L1 blockade is a promising strategy to eradicate cancer cells. However, the PD-L1 pathological level is inconsistent with the therapeutic response and is not a reliable biomarker to stratify patients for anti-PD-1/PD-L1 therapy. Here, we describe patient sample deglycosylation in an immunohistochemistry (IHC) assay to resolve this challenge.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that lack effective therapeutic strategies. The response rate of PDAC for treatment with gemcitabine, a current first-line chemotherapeutic for this tumor, is lower than 20%. Identifying key targetable molecules that mediate gemcitabine resistance and developing novel strategies for precision PDAC medicine are urgently needed.

View Article and Find Full Text PDF

Pyrolytic transition metal nitrogen-carbon (M-N/C) materials are considered as the most promising alternatives for platinum-based catalysts toward oxygen reduction reaction (ORR). As the proton-coupled electron transfer step in ORR has been proven to be a rate-determining step in the M-N/C catalysts, we envisaged that building a protophilic surface might be helpful to enhance the ORR activity. Herein, a polyaniline decoration strategy was put forward and realized to confer the Fe-N/C catalyst with a surface protophilic environment.

View Article and Find Full Text PDF

The cyclin-dependent kinase 2 (CDK2) inhibitor dinaciclib, a potential anti-cancer drug, has been tested in clinical trials and reported to suppress tumor initiating cells. Our recent study demonstrated that pharmacological inhibition of CDK2 or enhancer of zeste homolog 2 (EZH2) allows re-expression of ERα and converts triple-negative breast cancers (TNBC) to luminal ERα-positive, rendering TNBC cells targetable by tamoxifen. Like TNBC, EZH2 is also commonly overexpressed in ovarian cancers, and overexpression of cyclin E1 gene (CCNE1) and/or amplification of its associated kinase gene is present in ovarian tumor specimens, both of which are associated with primary treatment resistance and poor outcome in high-grade serous ovarian cancer (HGSC).

View Article and Find Full Text PDF

The limited treatment options and therapeutic failure due to acquired resistance for patients with triple-negative breast cancer (TNBC) represent a significant challenge. Inhibitors against poly (ADP-ribose) polymerase (PARP), olaparib and talazoparib, were recently approved for the treatment of metastatic breast cancer (including TNBC) in patients with germline mutations. Despite impressive response rates of ~60%, the prolongation in median progression-free survival with a PARPi is modest, suggesting the emergence of resistance.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC), which lacks estrogen receptor α (ERα), progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expression, is closely related to basal-like breast cancer. Previously, we and others report that cyclin E/cyclin-dependent kinase 2 (CDK2) phosphorylates enhancer of zeste homolog 2 (EZH2) at T416 (pT416-EZH2). Here, we show that transgenic expression of phospho-mimicking EZH2 mutant EZH2 in mammary glands leads to tumors with TNBC phenotype.

View Article and Find Full Text PDF

Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) are promising targeted therapeutics for breast and ovarian cancers bearing a germline mutation ( ), and several have already received regulatory approval in the United States. In patients with a cancer, PARPi can increase the burden of unrepaired DNA double-strand breaks by blocking PARP activity and trapping PARP1 onto damaged DNA. Resistance to PARP inhibitors can block the formation of DNA double-strand breaks through BRCA-related DNA repair pathway.

View Article and Find Full Text PDF

PARP1 inhibitors (PARPi) are currently used in the clinic for the treatment of ovarian and breast cancers, yet their therapeutic efficacy against hepatocellular carcinoma (HCC) has been disappointing. To ensure therapeutic efficacy of PARPi against HCC, a disease often diagnosed at intermediate to advanced stages with no effective treatment options, it is critical to identify not only biomarkers to predict PARPi resistance but also rational treatments to overcome this. Here, we report that a heterodimer of EGFR and MET interacts with and phosphorylates Y907 of PARP1 in the nucleus, which contributes to PARPi resistance.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have been suggested to repress transcription via binding the 3'-untranslated regions of mRNAs. However, the involvement and details of miRNA-mediated epigenetic regulation, particularly in targeting genomic DNA and mediating epigenetic regulation, remain largely uninvestigated. In the present study, transcription factor CCAAT/enhancer binding protein delta (CEBPD) was responsive to the anticancer drug bortezomib, a clinical and highly selective drug for leukemia treatment, and contributed to bortezomib-induced cell death.

View Article and Find Full Text PDF

Infection by the dengue virus (DENV) threatens global public health due to its high prevalence and the lack of effective treatments. Host factors may contribute to the pathogenesis of DENV; herein, we investigated the role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which is activated by DENV in mononuclear phagocytes. DENV infection selectively activates Nrf2 following nuclear translocation.

View Article and Find Full Text PDF

Purpose: Cisplatin (CDDP) is frequently used in combination chemotherapy with paclitaxel for treating urothelial carcinoma of the urinary bladder (UCUB). CDDP cross-resistance has been suggested to develop with paclitaxel, thus hindering successful UCUB treatment. Therefore, elucidating the mechanisms underlying CDDP-induced anticancer drug resistance is imperative and may provide an insight in developing novel therapeutic strategy.

View Article and Find Full Text PDF

TIM-3 functions to enforce CD8+ T cell exhaustion, a dysfunctional state associated with the tolerization of tumor microenvironment. Here we report apoptosis of IFN-γ competent TIM-3+ population of tumor-infiltrating CD8+ T cells in colon cancer. In humans suffering from colorectal cancer, TIM-3+ population is higher in cancer tissue-resident relative to peripheral blood CD8+ T cells.

View Article and Find Full Text PDF

Acute myeloid leukemia is the majority type presented in leukemia patients. Forcing malignant cells to undergo differentiation is 1 strategy for acute myeloid leukemia therapy. However, the failure of acute myeloid leukemia patients to achieve remission as a result of drug resistance remains a challenge.

View Article and Find Full Text PDF