Orthotopic advanced hepatic tumor resection without precise location and preoperative downstaging may cause clinical postoperative recurrence and metastasis. Early accurate monitoring and tumor size reduction based on the multifunctional diagnostic-therapeutic integration platform could improve real-time imaging-guided resection efficacy. Here, a Near-Infrared II/Photoacoustic Imaging/Magnetic Resonance Imaging (NIR-II/PAI/MRI) organic nanoplatform IRFEP-FA-DOTA-Gd (IFDG) is developed for integrated diagnosis and treatment of orthotopic hepatic tumor.
View Article and Find Full Text PDFAcute lung injury (ALI) and sepsis are both serious and complex conditions associated with high mortality, yet there are no effective treatments. Herein, we designed and synthesized a series of diphenyl 6-oxo-1,6-dihydropyridazine-3-carboxylate/carboxamide analogues exhibiting anti-inflammatory activity. The optimal compound decreased the release of TNF-α and IL-6 in mouse and human cells J774A.
View Article and Find Full Text PDFAmide bonds widely exist in the structure of natural products and drugs, and play an important role in biological activities. However, due to the limitation of synthesis conditions, there are few studies on biscarbonyl diimides. In this paper, a series of new compounds with diimide skeleton were synthesized by using CDI and NaH as condensation agents.
View Article and Find Full Text PDFMyeloid differentiation primary response protein 88 (MyD88) is crucial to immune cascades mediated by Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 dysregulation has been linked to a wide variety of inflammatory diseases, making it a promising new target for anti-inflammatory and cancer therapy development. In this study, 46 compounds were designed and synthesized inspired by virtual screen hit.
View Article and Find Full Text PDFTwo interrelated problems exist: the non-renewability of phosphate rock as a resource and the excess phosphate in the water system lead to eutrophication. Removal and recovery of phosphorus (P) from waste streams at wastewater treatment plants (WWTPs) is one of the promising solutions. This paper reviews strategies for P recovery from waste streams in WWTPs are reviewed, and the main P recovery processes were broken down into three parts: enrichment, extraction, and crystallization.
View Article and Find Full Text PDFRecovery of phosphorus (P) from wastewater can help establish a new P cycle. However, there are many P forms in wastewater, not always in reactive forms, which are the most suitable for direct recovery. The enhanced biological phosphorus removal process with sidestream phosphorus recovery (EBPR-SPR) is an effective way to remove and recover P resources in wastewater, but there is a lack of research on the transformation and fate of non-reactive phosphorus (NRP) in it.
View Article and Find Full Text PDFRecovery of phosphorus from sewage can help establish a new phosphorus cycle and hydroxyapatite (HAP) crystallization is a promising way. HAP crystallization is an amorphous calcium phosphate (ACP) mediated process, and its induction time reflects the rate of HAP nucleation, and seriously affects the efficiency of phosphorus recovery. In this study, the effects of different types of dissolved organic matter (DOM) on the induction time and phosphorus recovery performance of ACP-mediated HAP phosphorus recovery were studied, and the mechanism was analyzed by X-Ray Diffraction, Fourier transform infrared spectroscopy, and scanning electron micrograph with energy dispersive spectrometry.
View Article and Find Full Text PDFThe depletion of phosphorus resources and the excess discharge of phosphorus into waste streams are contrasting problems. The key to solving both problems is to recover phosphorus from the waste streams. Current phosphorus recovery technologies require high phosphorus concentrations and lack the ability to separate toxic substances from recovered phosphorus products.
View Article and Find Full Text PDF