Publications by authors named "Yuyao Wei"

Heat shock protein 70 (HSP70) is a class of important molecular chaperones that are involved in protein folding, stabilization, and maturation, and play a vital role in plant growth and response to environmental stress. Apple trees frequently suffer from different-degree salt stress, which seriously affects their growth, quality, and yield. However, whether HSP70 genes are involved in salt tolerance is unexplored in apple.

View Article and Find Full Text PDF

We discuss the article by Koizumi published in the . Our focus is on the therapeutic targets for fibrosis associated with alcohol-related liver disease (ALD) and the mechanism of action of elafibranor (EFN), a dual agonist of peroxisome proliferator-activated receptor α (PPARα) and peroxisome PPAR δ (PPARδ). EFN is currently in phase III clinical trials for the treatment of metabolic dysfunction-associated fatty liver disease and primary biliary cholangitis.

View Article and Find Full Text PDF

Salinity stress is a significant environmental factor that impacts the growth, development, quality, and yield of crops. The 2OG-Fe (II) oxygenase family of enzyme proteins plays crucial roles in plant growth and stress responses. Previously, we identified and characterized MdCo, which encodes a putative 2OG-Fe (II) oxygenase, a key gene for controlling the columnar growth habit of apples.

View Article and Find Full Text PDF

Sulodexide, a heparinoid medicine, is wildly used in clinic for prophylaxis and treatment of thromboembolic diseases and diabetic nephropathy. Despite its widespread use, the structure of Sulodexide remains poorly understood. It consists of various polysaccharides characterized by differing sugar compositions, linkages, and sulfonation patterns, yet they share common features such as strong hydrophilicity, high native charges, and considerable polydispersity, posing significant challenges for conventional chromatographic and online mass spectrometry (MS) characterization.

View Article and Find Full Text PDF

The development of tin-lead alloyed halide perovskite nanocrystals (PNCs) is highly desirable for creating ultrastable, eco-friendly optoelectronic applications. However, the current incorporation of tin into the lead matrix results in severe photoluminescence (PL) quenching. To date, the precise atomic-scale structural origins of this quenching are still unknown, representing a significant barrier to fully realizing the potential of these materials.

View Article and Find Full Text PDF

Iodine-doped bromide perovskite single crystals (IBPSCs) have important applications in optoelectronic fields, such as in solar cells. Currently, much research has aimed to study the phase separation phenomenon and device performance improvements in IBPSCs. However, important intrinsic photoexcited carrier dynamics are often overlooked in IBPSCs.

View Article and Find Full Text PDF

Nowadays, the extensively used lead sulfide (PbS) quantum dot (QD) hole transport layer (HTL) relies on layer-by-layer method to replace long chain oleic acid (OA) ligands with short 1,2-ethanedithiol (EDT) ligands for preparation. However, the inevitable significant volume shrinkage caused by this traditional method will result in undesired cracks and disordered QD arrangement in the film, along with adverse increased defect density and inhomogeneous energy landscape. To solve the problem, a novel method for EDT passivated PbS QD (PbS-EDT) HTL preparation using small-sized benzoic acid (BA) as intermediate ligands is proposed in this work.

View Article and Find Full Text PDF

Driven by the intricacy of the illness and the need for individualized treatments, targeted therapy and biomarker research in thyroid cancer represent an important frontier in oncology. The variety of genetic changes associated with thyroid cancer demand more investigation to elucidate molecular details. This research is clinically significant since it can be used to develop customized treatment plans.

View Article and Find Full Text PDF

Inorganic tin (Sn) perovskite nanocrystals offer a promising solution to the potential toxicity concerns associated with their established lead (Pb)-based counterparts. Yet, achieving their superior stability and optoelectronic properties remains an ongoing challenge. Here, we report a synthesis of high-symmetry α-phase CsSnI nanocrystals with an ultralong 278 ns carrier lifetime, exceeding previous benchmarks by 2 orders of magnitude through meticulous Sn(IV) control.

View Article and Find Full Text PDF

Further improvement of the performance and stability of inverted perovskite solar cells (PSCs) is necessary for commercialization. Here, ferrocene derivative dibenzoylferrocene (DBzFe) is used as an additive to enhance the performance and stability of MA- and Br- free PSCs. The results show that the introduction of DBzFe not only passivates the defects in the film but also inhibits the ion migration in the film.

View Article and Find Full Text PDF

This report is on the efficiency enhancement of wide bandgap lead halide perovskite solar cells (WBG Pb-PVK PSCs) consisting of FACsPbIBr as the light-harvesting layer. WGB Pb-PVK PSCs have attracted attention as the top layer of all perovskite-tandem solar cells. Poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA), a conductive polymer, is always used as the hole transporting layer (HTL) for Pb-PVK PSCs.

View Article and Find Full Text PDF

A deep understanding of the effect of the A-site cation cross-exchange on the hot-carrier relaxation dynamics in perovskite quantum dots (PQDs) has profound implications on the further development of disruptive photovoltaic technologies. In this study, the hot carrier cooling kinetics of pure FAPbI (FA , CH(NH ) ), MAPbI (MA , CH NH ), CsPbI (Cs , Cesium) and alloyed FA MA PbI , FA Cs PbI , and MA Cs PbI QDs are investigated using ultrafast transient absorption (TA) spectroscopy. The lifetimes of the initial fast cooling stage (<1 ps) of all the organic cation-containing PQDs are shorter than those of the CsPbI QDs, as verified by the electron-phonon coupling strength extracted from the temperature-dependent photoluminescence spectra.

View Article and Find Full Text PDF

Zinc oxide (ZnO) nanowire (NW) based lead sulfide (PbS) quantum dot solar cells (QDSCs), i.e., bulk heterojunction QDSCs, have been widely investigated because of the excellent photoelectronic properties of PbS QDs and ZnO NWs.

View Article and Find Full Text PDF

Lead sulfur colloidal quantum dots (PbS CQDs) are a kind of IV-VI semiconductor nanocrystals which have attracted enormous interest in recent years because of their unique physicochemical properties. Controlling size, size distribution, and yield of PbS CQDs plays key priorities in order to improve their properties when they are applied in the photovoltaics and energy storage applications. Despite many systematical studies in PbS CQD syntheses with various perspectives, details of the formation mechanism impacted on the size, concentration, and size distribution of PbS CQDs in complicated reaction conditions remain poorly understood.

View Article and Find Full Text PDF