The morphology of lizard skulls is highly diverse, and it is crucial to understand the factors that constrain and promote their evolution to understand how lizards thrive. The results of interactions between cranial bones reflecting these factors can be detected as integration and modularity, and the analysis of integration and modularity allows us to explore the underlying factors. In this study, the integration and modularity of the skulls of lizards and the outgroup tuatara are analyzed using a new method, Anatomical Network Analysis (AnNA), and the factors causing lizards morphological diversity are investigated by comparing them.
View Article and Find Full Text PDFAutothermal thermophilic aerobic digestion (ATAD) is used to treat human excreta hygienically. We previously reported a unique full-scale ATAD, showing distinctive bacterial community transitions and producing high-nitrogen-content liquid fertilizer; nevertheless, the mechanism remains unclear. One hypothesis involves using a gas-inducing (GI) agitator.
View Article and Find Full Text PDFThe webbed feet of waterbirds are morphologically diverse and classified into four types: the palmate foot, semipalmate foot, totipalmate foot, and lobate foot. To understand the developmental mechanisms underlying this morphological diversity, we conducted a series of comparative analyses. Ancestral state reconstruction based on phylogeny assumed that the lobate feet possessed by the common coot and little grebe arose independently, perhaps through distinct developmental mechanisms.
View Article and Find Full Text PDFAutothermal thermophilic aerobic digestion (ATAD) is conducted for stabilization of sludge waste and is driven by the action of various microorganisms under aerobic conditions. However, the mechanism controlling bacterial community changes during ATAD via three (initial, middle and final) phases is currently unclear. To investigate this mechanism, activity analysis and a microcosm assay with shaking were performed on a bacterial community during the initial, middle, and final phases of incubation.
View Article and Find Full Text PDFA unique autothermal thermophilic aerobic digestion (ATAD) process has been used to convert human excreta to liquid fertilizer in Japan. This study investigated the changes in physicochemical and bacterial community characteristics during the full-scale ATAD process operated for approximately 3 weeks in 2 different years. After initiating simultaneous aeration and mixing using an air-inducing circulator (aerator), the temperature autothermally increased rapidly in the first 1 to 2 days with exhaustive oxygen consumption, leading to a drastic decrease and gradual increase in oxidation-reduction potential in the first 2 days, reached >50°C in the middle 4 to 6 days, and remained steady in the final phase.
View Article and Find Full Text PDF