Publications by authors named "Yuxue Zhou"

The scaling of bulk Si-based transistors has reached its limits, while novel architectures such as FinFETs and GAAFETs face challenges in sub-10 nm nodes due to complex fabrication processes and severe drain-induced barrier lowering (DIBL) effects. An effective strategy to avoid short-channel effects (SCEs) is the integration of low-dimensional materials into novel device architectures, leveraging the coupling between multiple gates to achieve efficient electrostatic control of the channel. We employed TCAD simulations to model multi-gate FETs based on various dimensional systems and comprehensively investigated electric fields, potentials, current densities, and electron densities within the devices.

View Article and Find Full Text PDF

High performance is a crucial factor in seeking a more competitive levelized cost of electricity for the extensive popularization of c-Si solar cells. Here, CsPbBr quantum dots (QDs) have been first applied as the light-converting layer to enhance the full-spectrum light response, resulting in an ∼71% enhancement of power conversion efficiency within silicon-based solar cells. Remarkably, even if the photon energy is smaller than the bandgap of CsPbBr QDs, the long-wavelength external quantum efficiency shows a significant increase.

View Article and Find Full Text PDF

Chalcogenides, a promising class of electrode materials, attracted massive popularity owing to their exciting features of high conductive nature, high capacity, rich redox activities, and structural functionalities, making them the first choice for the electrochemical energy domain. This paper reported a new NiSe-CuSe nanocomposite prepared via a wet-chemical synthesis followed by a low-cost and simple hydrothermal reaction. The physical characterization showed cubes and nanoparticles type morphological features of NiSe and CuSe products, while their composite reveals a combined morphological characteristic.

View Article and Find Full Text PDF

To study the effect of solvent on supramolecular self-assembly behaviors, a chiral courmarin-substituted glutamine amphiphile, L/DG-Cm, was synthesized for investigation. It was found that L/DG-Cm self-assembled into short nanotubes in toluene, while it formed longer nanotubes together with an obvious helix nanobelt structure for L/DG-Cm in DMSO, demonstrating that the nanotubes were formed by nanobelt rolling. The CD and CPL spectra revealed the same chiral property of the L/DG-Cm assemblies formed in toluene and DMSO.

View Article and Find Full Text PDF

50 New drugs including 36 chemical entities and 14 biologics were approved by the U.S. Food and Drug Administration during 2021.

View Article and Find Full Text PDF

In this paper, the authors report the fabrication of a sensitive deep ultraviolet (DUV) photodetector by using an individual GaSe nanobelt with a thickness of 52.1 nm, which presents the highest photoresponse at 265 nm illumination with a responsivity and photoconductive gain of about 663 A W and 3103 at a 3 V bias, respectively, comparable to or even better than other reported devices based on conventional wide bandgap semiconductors. According to the simulation, this photoelectric property is associated with the wavelength-dependent absorption coefficient of the GaSe crystal, for which incident light with shorter wavelengths will be absorbed near the surface, while light with longer wavelengths will have a larger penetration depth, leading to a blueshift of the absorption edge with decreasing thickness.

View Article and Find Full Text PDF

In this work, we report on the synthesis of InSe nanobelts through a catalyst-free chemical vapor deposition (CVD) growth approach. A remarkable blue shift of the peak photoresponse was observed when the thickness of the InSe nanobelt decreases from 562 to 165 nm. Silvaco Technology Computer Aided Design (TCAD) simulation reveals that such a shift in spectral response should be ascribed to the wavelength-dependent absorption coefficient of InSe, for which incident light with shorter wavelengths will be absorbed near the surface, while light with longer wavelengths will have a greater penetration depth, leading to a red shift of the absorption edge for thicker nanobelt devices.

View Article and Find Full Text PDF

Molybdenum disulfide (MoS) nanosheets are promising candidates as earth-abundant and low-cost catalyst for hydrogen evolution reaction (HER). Nevertheless, compared with the benchmark Pt/C catalyst, the application of MoSnanosheets is limited to its relatively low catalytic activity, especially in alkaline environments. Here, we developed a dual-cation doping strategy to improve the alkaline HER performance of MoSnanosheets.

View Article and Find Full Text PDF

Patterned growth of periodic perovskite film arrays is essential for application in sensing devices and integrated optoelectronic systems. Herein, we report on patterned growth of addressable perovskite photodetector arrays through an uncured polydimethylsiloxane (PDMS) oligomer-assisted solution-processed approach, in which a periodic hydrophilic/hydrophobic substrate replicating the predesigned patterns of the PDMS stamp was formed due to the migration of uncured siloxane oligomers in the PDMS stamp to the intimately contacted substrate. By using this technique, MAPbI film photodetector arrays with neglectable pixel-to-pixel variation, a responsivity of 2.

View Article and Find Full Text PDF

A Mo-Ni alloy has been demonstrated to be a benchmark noble-metal-free catalyst for the hydrogen evolution reaction (HER) in alkaline solutions. Nevertheless, further improvement on its catalytic activity is desired to meet industrial requirements. In this study, Mo-Ni-based hollow structures (MoNi-HS), backboned by MoO nanosheets and decorated with metallic MoNi nanoparticles, were obtained via a topological transformation process by annealing MoNi-oxide hollow precursors in a reducing atmosphere.

View Article and Find Full Text PDF

Owing to its abundance, high gravimetric energy density, and environmental friendliness, hydrogen is a promising renewable energy to replace fossil fuels. One of the most prominent routes toward hydrogen acquisition is water splitting, which is currently bottlenecked by the sluggish kinetics of oxygen evolution reaction (OER). Numerous of electrocatalysts have been developed in the past decades to accelerate the OER process.

View Article and Find Full Text PDF

Two-dimensional thin Bi₂WO₆ nanoplates have been fabricated using a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method. We investigated the proposed formation mechanism based on the crystalline structures of the thin Bi₂WO₆ nanoplates. The high adsorption ability and excellent visible-light driven photocatalytic activities of the Bi₂WO₆ nanoplates were illustrated, in view of exposed (001) facets of nanoplates possessing faster separation of photo-generated charge carriers and increased catalytically active sites.

View Article and Find Full Text PDF

Core-shell structured Fe3O4@Bi2WO6 composite microspheres (Fe3O4 microspheres as core and Bi2WO6 nanoplates as shell) have been fabricated in a facile and cost effective reflux way. Such fabricated Fe3O4@Bi2WO6 composites show good visible-light driven photocatalytic performance on degradation of rhodamine B (RhB) from solution in presence of H2O2. More importantly, they can be easily harvested from aqueous system for recycle with small loss of their photocatalytic activity upon applying an external magnet.

View Article and Find Full Text PDF

The B-cell-specific Moloney leukemia virus inset site 1 gene (BMI-1) has attracted considerable attention in recent years because of its key role in breast cancer development and metastasis. The downregulation of BMI-1 expression via small interfering RNA (siRNA) effectively inhibits tumor growth. However, the successful application of this therapy is limited by the unavailability of an appropriate vector for siRNA transfer.

View Article and Find Full Text PDF

The visible-light-driven photocatalytic activities of graphene-semiconductor catalysts have recently been demonstrated, however, the transfer pathway of photogenerated carriers especially where the role of graphene still remains controversial. Here we report graphene-SnO2 aerosol nanocomposites that exhibit more superior dye adsorption capacity and photocatalytic efficiency compared with pure SnO2 quantum dots, P25 TiO2, and pure graphene aerosol under the visible light. This study examines the origin of the visible-light-driven photocatalysis, which for the first time links to the synergistic effect of the cophotosensitization of the dye and graphene to SnO2.

View Article and Find Full Text PDF

Unique hematite nanochains self-assembled from α-Fe(2)O(3) nanoparticles can be synthesized by thermal decomposition of [Fe(18)S(25)](TETAH)(14) as an appropriate nanoribbon precursor (TETAH = protonated triethylenetetramine). Magnetic studies have revealed greatly enhanced coercivity of the 1D hematite nanochains compared with that of dispersed α-Fe(2)O(3) nanoparticles at low temperature, which may be attributed to their increased shape anisotropy and magnetocrystalline anisotropy. The photocatalytic properties of the hematite nanochains have been studied, as well as their electrochemical properties as cathode materials of lithium-ion batteries.

View Article and Find Full Text PDF

A simple solvothermal route in a binary solution of triethylenetetramine (TETA) and deionized water (DIW) has been used to synthesize hierarchical hollow Co(9)S(8) microspheres with high surface area (80.38 m(2) g(-1)). An appropriate volume ratio of TETA:DIW has been found to be essential for the formation of hollow Co(9)S(8) microspheres.

View Article and Find Full Text PDF

Highly hierarchical platelike FeWO(4) microcrystals have been synthesized by a simple solvothermal route using FeCl(3) x 6 H(2)O and Na(2)WO(4) x 2 H(2)O as precursors, where ethylene glycol (EG) plays an important role as a capping agent in directing growth and self-assembly of such unique structures. In addition, a certain amount of CH(3)COONa (NaAc) was necessary for the formation of such unique FeWO(4) microstructures. The photocatalytic property of as-synthesized hierarchical FeWO(4) microcrystals has been first studied, which shows excellent photocatalytic activity for the degradation of rhodamine B (RhB) under UV and visible light irradiation (modeling sunlight).

View Article and Find Full Text PDF