In order to achieve highly precise medical image segmentation, this paper presents ConvMedSegNet, a novel convolutional neural network designed with a U-shaped architecture that seamlessly integrates two crucial modules: the multi-receptive field depthwise convolution module (MRDC) and the guided fusion module (GF). The MRDC module's primary function is to capture texture information of varying sizes through multi-scale convolutional layers. This information is subsequently utilized to enhance the correlation of global feature data by expanding the network's width.
View Article and Find Full Text PDF