Drilling engineering plays a pivotal role in the exploration and extraction of subsurface resources. It heavily depends on drilling fluid, which serves various essential functions including cooling the drill bit, removing drilled cuttings, maintaining formation pressure equilibrium, stabilizing the wellbore, transmitting hydraulic pressure, and safeguarding oil and gas reservoirs. Nonetheless, drilling fluid encounters multiple obstacles such as leakage control, waste fluid management, prevention of wellbore collapse, avoidance of hole enlargement, and environmental preservation.
View Article and Find Full Text PDFGraphene is a material formed with carbon atoms connected by sp hybridization. It is extremely strong and very ductile, and is superhydrophobic and superlipophilic. It has important application prospects in materials science, micro and nano processing, energy, aerospace and biomedicine.
View Article and Find Full Text PDFOne of the principal conundrums in drilling operations is addressing wellbore instability caused by shale hydration. Therefore, it is crucial to develop high-performance shale inhibitors. In this work, a hyperbranched polyethyleneimine/graphene composite (HPEI-G) was prepared by blending at 60 °C, and it was then used as a shale inhibitor.
View Article and Find Full Text PDFFor wellbore stability in shale formations, the development of environmentally friendly and efficient shale inhibitors is urgently needed. Herein, we report the preparation of choline chloride-modified graphene (Ch-G). The inhibition and interaction mechanisms of choline chloride-modified graphene on montmorillonite were also investigated.
View Article and Find Full Text PDFThe problem of high friction and high torque is one of the most troublesome problems for engineers in extended reach wells and long horizontal wells. Generally, the friction coefficient of oil-based drilling fluid is around 0.08, while the friction coefficient of water-based drilling fluid exceeds 0.
View Article and Find Full Text PDFTo control the fluid loss of water-based drilling fluids (WBDFs) in salt-gypsum formations, a nano-SiO graft copolymer was prepared by inverse emulsion polymerization. The polymer (EAANS) was prepared with acrylamide, 2-acrylamido-2-methyl-1-propane sulfonic acid, N-vinylpyrrolidone, and KH570-modified nano-silica (M-SiO) as raw materials. The molecular structure and morphology of EAANS were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, thermogravimetric analysis, transmission electron microscopy (TEM), and other methods.
View Article and Find Full Text PDFThe wellbore instability caused by the penetration of drilling fluids into the formation is a vital problem in the drilling process. In this study, we synthesized a polymer/graphene oxide composite (PAAN-G) as a fluid loss additive in water-based drilling fluids. The three monomers (acrylamide (AM), 2-acrylamide-2-methyl-1-propane sulfonic acid (AMPS), -vinylpyrrolidone (NVP)) and graphene oxide (GO) were copolymerized using aqueous free radical polymerization.
View Article and Find Full Text PDFAcrylamide polymers were widely used as oilfield chemical treatment agents because of their wide viscosity range and versatile functions. However, with the increased formation complexity, their shortcomings such as poor solubility and low resistance to temperature, salt, and calcium were gradually exposed. In this paper, acrylamide (AM)/2-acrylamide-2-methyl-1-propane sulfonic acid (AMPS) copolymers were synthesized by aqueous solution polymerization and inverse emulsion polymerization, respectively.
View Article and Find Full Text PDFThe contradiction between the sag stability of weighted materials and the rheological properties of drilling fluids is one of the main technical difficulties in high-density drilling fluids. Thus, understanding the suspension mechanism of weighting materials is the key to improving the sag stability of weighting materials. In this study, micro-manganese (MnO) was compared with the commonly used weighting agent barite to study the suspension mechanism of MnO.
View Article and Find Full Text PDFWe synthesized a biodegradable and environmentally friendly shale inhibitor based on chitosan-grafted l-arginine (CA) for wellbore stability in shale formation. The structure of CA was characterized by Fourier-transform infrared spectroscopy. Linear swelling, shale hot-rolling recovery, shale inhibition durability, and sedimentation experiments were used to evaluate the inhibition properties of CA and compared with the commonly used inhibitors potassium chloride (KCl) and polyamines (HPA and SIAT).
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2012
A complex between an anionic perylene diimide derivative (PDI-GlyAsp) and cupric ion has been prepared and applied to be turn-on fluorescent probe for the detection of pyrophosphate (PPi) in 100% aqueous solution. The complex formation process and PPi detection have been studied by absorption and emission spectroscopy. It was confirmed that the introduction of cupric ion into PDI-GlyAsp solution resulted in the assembly of PDI-GlyAsp into PDI-GlyAsp/Cu(2+) aggregates, leading to the fluorescence quenching of PDI-GlyAsp.
View Article and Find Full Text PDF