Publications by authors named "Yuxing Yan"

Objectives: Data on the oral health status in the Qinghai-Tibetan Plateau are limited. This study aimed to investigate the dental caries status and identify associated risk factors among 8- to 12-year-old children in Gannan, a Tibetan Autonomous Prefecture in Northwest China.

Methods: The study population was recruited using a multistage stratified random sampling procedure.

View Article and Find Full Text PDF

Silk sutures are common in surgeries, and silk-based textiles are widely used in clinical medicine on account of their great mechanical properties and biodegradability. However, due to the lack of biocatalytic activity, silk sutures show unsatisfactory anti-inflammatory properties and healing speed. To address this constraint, we construct clinical grade bioactive gold cluster-sutures through a heterojunction.

View Article and Find Full Text PDF
Article Synopsis
  • Strain engineering is key for enhancing the electronic and catalytic properties of biocatalysts, but modifying atomic-scale strain for specific enzyme-like reactions remains a challenge.
  • Researchers designed various configurations of platinum atoms on palladium-gold biocatalysts, finding that atomically-resolved platinum clusters improve catalytic activity through favorable atomic strain and increased active sites.
  • The platinum clusters exhibit significantly enhanced peroxidase-like activity compared to natural enzymes, with implications for clinical applications in cancer diagnosis and reducing inflammation and oxidative stress.
View Article and Find Full Text PDF

Currently, pulmonary complications such as lung infections during the perioperative period are still the main cause of prolonged hospitalization and death in patients with lung injury due to the lack of effective drugs. Clusterzyme, a kind of artificial enzyme with a high enzyme-like activity and safety profile, exhibits good effects on reducing oxidative stress and immunomodulation. Here, we present the functionalized patches that is administered on the lung airways and rescues the injured organ via clusterzymes.

View Article and Find Full Text PDF

Background: The excessive secretion of glucocorticoids resulting from the overactivation of the hypothalamic-pituitary-adrenal axis is a crucial factor in the pathogenesis of depression. RIPK3 plays a significant role in apoptosis and necroptosis. Glucocorticoids have been implicated in directly regulating the expression of RIPK3, leading to apoptosis and necroptosis of osteoblasts.

View Article and Find Full Text PDF
Article Synopsis
  • Excessive NADH levels in organisms are linked to several diseases, creating a need for efficient conversion to NAD.
  • Researchers developed multi-metal atom nanozymes (MANs) that mimic natural enzymes to facilitate this conversion, with a focus on the RhCo MAN demonstrating effective oxidase-like activity.
  • The RhCo MAN not only enhances NAD regeneration but also helps modulate macrophage polarization, potentially aiding in skin regeneration, while other variants show limited effectiveness in treating conditions like eczema.
View Article and Find Full Text PDF

Strong fluorescence and high catalytic activities cannot be achieved simultaneously due to conflicts in free electron utilization, resulting in a lack of bioactivity of most near-infrared-II (NIR-II) fluorophores. To circumvent this challenge, we developed atomically precise Au clusters with strong NIR-II fluorescence ranging from 950 to 1300 nm exhibiting potent enzyme-mimetic activities through atomic engineering to create active Cu single-atom sites. The developed AuCu clusters show 18-fold higher antioxidant, 90-fold higher catalase-like, and 3-fold higher superoxide dismutase-like activities than Au clusters, with negligible fluorescence loss.

View Article and Find Full Text PDF

If esophageal papilloma (EP) is a rare condition, esophageal papillomatosis (EPS) is a distinct rarity. To date, only 53 well documented cases have been described in English literature. However, the number of reports on EPS significantly increased to over 40 cases during the past 20 years.

View Article and Find Full Text PDF

Herein, a novel fluorometric-sensor with dual-emission system was constructed on the basis of polyvinylpyrrolidone (PVP) and 2-mercaptobenzothiazole (MBT) co-functionalized gold/copper nanoclusters (PVP/MBT-Au@CuNCs) by a facile and eco-friendly one-pot approach. The sensor exhibited ratiometric fluorescence emission (F/F) for visual and selective detection of S with a sensitive detection limit of 11.9 nM.

View Article and Find Full Text PDF

Electrochemical modification is a mild and economical way to prepare electrocatalytic materials with abundant active sites and high atom efficiency. In this work, a stable NiFeCuPt carbon matrix deposited on nickel foam (NFFeCuPt) was fabricated with an extremely low Pt load (∼28 μg cm) using one-step electrochemical co-deposition modification, and it serves as a bifunctional catalyst for overall water splitting and achieves 100 mA cm current density at a low cell voltage of 1.54 V in acidic solution and 1.

View Article and Find Full Text PDF

Haptic rendering enables people to touch, perceive, and manipulate virtual objects in a virtual environment. Using six cascaded identical hollow disk electromagnets and a small permanent magnet attached to an operator's finger, this paper proposes and develops an untethered haptic interface through magnetic field control. The concentric hole inside the six cascaded electromagnets provides the workspace, where the 3D position of the permanent magnet is tracked with a Microsoft Kinect sensor.

View Article and Find Full Text PDF

We reported that over-expression of MST1 induced the impairment of spatial memory via disturbing neural oscillation patterns in mice. Meanwhile, the P-MST1 is increased in the hippocampus after chronic unpredictable mild stress (CUMS). However, it is unclear if MST1 knockdown protects against stress-induced memory deficits via modulating neural activities.

View Article and Find Full Text PDF

The COVID-19 pandemic has spurred controversies related to whether countries manipulate reported data for political gains. We study the association between accuracy of reported COVID-19 data and developmental indicators. We use the Newcomb-Benford law (NBL) to gauge data accuracy.

View Article and Find Full Text PDF

Tactile sensation is a promising information display channel for human beings that involves supplementing or replacing degraded visual or auditory channels. In this paper, a wrist-wearable tactile rendering system based on electro-tactile stimulation is designed for information expression, where a square array with 8 × 8 spherical electrodes is used as the touch panel. To verify and improve this touch-based information display method, the optimal mode for stimulus signals was firstly investigated through comparison experiments, which show that sequential stimuli with consecutive-electrode-in-active mode have a better performance than those with single-electrode-in-active mode.

View Article and Find Full Text PDF

Depression is a long-lasting and persistent mood disorder in which the regulatory mechanisms of neuroinflammation are thought to play a contributing role to the physiopathology of the condition. Previous studies have shown that liver X receptors (LXRs) can regulate the activation of microglia and neuroinflammation. However, the role of LXRs in depression remains to be fully understood.

View Article and Find Full Text PDF

Depression is a common mental disorder, and its main environmental risk factor is chronic stress. The activation of mammalian STE20-like kinase 1 (MST1), a key factor involved in the underlying pathophysiology of stress, can trigger synaptic plasticity impairment, neuronal dysfunction and neuroinflammation. However, it is unclear whether down-regulation of MST1 in the hippocampus protects against stress-induced behavioural dysfunctions.

View Article and Find Full Text PDF

The imbalance of amyloid-β (Aβ) production and clearance causes aggregation of Aβ monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ , inhibit Aβ fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD-like pathology is challenging.

View Article and Find Full Text PDF

Neuroinflammation is the important pathological feature of Alzheimer's disease (AD). Legumain, a lysosomal cysteine protease, plays an important role in neuroinflammation during ischemic stroke and depressive disorder. Legumain is involved in AD process through cleaving APP; however, it is unclear if legumain can possibly modulate neuroinflammation without cleaving APP in AD.

View Article and Find Full Text PDF

Mesoporous materials have attracted considerable attention because of their distinctive properties, including high surface areas, large pore sizes, tunable pore structures, controllable chemical compositions, and abundant forms of composite materials. During the last decade, there has been increasing research interest in constructing advanced mesoporous nanomaterials possessing short and open channels with efficient mass diffusion capability and rich accessible active sites for electrochemical energy conversion and storage. Here, the synthesis, structures, and energy-related applications of mesoporous nanomaterials are the main focus.

View Article and Find Full Text PDF

Mesoporous core-shell nanostructures with controllable ultra-large open channels in their nanoshells are of great interest. However, soft template-directed cooperative assembly to mesoporous nanoshells with highly accessible pores larger than 30 nm, or even above 50 nm into macroporous range, remains a significant challenge. Herein we report a general approach for precisely tailored coating of hierarchically macro-/mesoporous polymer and carbon shells, possessing highly accessible radial channels with extremely wide pore size distribution from ca.

View Article and Find Full Text PDF

The activated mammalian Ste20-like serine/threonine kinases 1 (MST1) was found in the central nervous system diseases, such as cerebral ischemia, stroke and ALS, which were related with cognitions. The aim of this study was to examine the effect of elevated MST1 on memory functions in C57BL/6J mice. We also explored the underlying mechanism about the pattern alteration of neural oscillations, closely associated with cognitive dysfunctions, at different physiological rhythms, which were related to a wide range of basic and higher-level cognitive activities.

View Article and Find Full Text PDF

Repetitive transcranial magnetic stimulation (rTMS), which could improve learning and memory, is widely used in psychiatry and neurology as a therapeutic approach. There are few studies reporting effective countermeasures to cognition decline in astronauts during space flight. Accordingly, we examined whether rTMS was able to significantly alleviate the learning and memory deficits induced by hindlimb unloading (HU), a general accepted rodent model to simulate microgravity, in mice.

View Article and Find Full Text PDF

Bioluminescence, wherein marine and terrestrial organisms chemically produce light for communication, is a burgeoning area of research. Herein, we demonstrate a new series of artificial chemiluminescent compounds inspired by the enol-degradation reaction of natural bioluminescent molecules, luciferins. Based on systematic optical experiments, isotope labeling, and theoretical calculations, the chemiluminescent mechanism of these new materials and the relationship of enol-degradation reaction and chemiluminescence are fully discussed.

View Article and Find Full Text PDF