Coking wastewater (CWW) has long been a serious challenge for anaerobic treatment due to its high concentrations of phenolics and nitrogen-containing heterocyclic compounds (NHCs). Herein, we proposed and validated a new strategy of using zero-valent iron (ZVI) to strengthen the anaerobic treatment of CWW. Results showed that COD removal efficiencies was increased by 9.
View Article and Find Full Text PDFCoal gasification wastewater (CGWW) is a typical toxic and refractory industrial wastewater. Here, a novel phenol and ammonia recovery process (IPE) was employed for CGWW pretreatment, and the coupled system assemble by the IPE process with A/O system (IPE-A/O) were operated to enhance the treatment performance of CGWW. The results showed that the IPE pre-treated effluent had a higher BOD/COD ratio and lower refractory compounds compared to a typical process (MIBK).
View Article and Find Full Text PDFCoal gasification wastewater is a typical high phenol-containing, toxic and refractory industrial wastewater. Here, lab-scale anaerobic-anoxic-oxic system was employed to treat real coal gasification wastewater, and methanol was added to oxic tank as the co-substrate to enhance the removal of refractory organic pollutants. The results showed that the average COD removal in oxic effluent increased from 24.
View Article and Find Full Text PDFHuan Jing Ke Xue
October 2016
Coking wastewater is a kind of highly toxic and refractory organic wastewater, and aerobic activated sludge, which is dominated by bacteria, determines the efficiency of coking wastewater treatment. However, the bacterial community structure of activated sludge from coking wastewater has rarely been reported. 454 sequencing technology was applied to investigate the structure and biodiversity of the bacterial community.
View Article and Find Full Text PDFIn this study, anaerobic granular sludge with sulphate-reducing bacteria (SRB) was applied to treat Cu2+-, SO4(2-) -containing wastewater in an expanded granular sludge bed reactor. The migration and enrichment of copper in anaerobic granular sludge were envaluated. By analysing the sludge with X-ray diffraction, copper was determined to be present as covellite (CuS) in the sludge.
View Article and Find Full Text PDFA novel technique for internal structure and elemental distribution analyses of granular sludge is presented. Sludge samples were freeze-dried and embedded in epoxy resin to form a module, which were then ground and polished to obtain sequential cross-sections. The cross-sections were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX).
View Article and Find Full Text PDFThe current study focused on the influences of various pretreatments, including alkaline, ultrasonic and thermal pretreatments on biological sulfate reduction with waste activated sludge (WAS) as sole electron donor. Our results showed that thermal and ultrasonic pretreatments increased the sulfate reduction percentage by 14.8% and 7.
View Article and Find Full Text PDFHuan Jing Ke Xue
February 2009
An SRB community (SRB-2) was enriched from marine sediment for the treatment of sulfate-rich wastewater of high salinity, and the effect of salinity, temperature, pH value, carbon source, concentration of sulfate and the form of Fe on the activity of SRB-2 was studied. The results show that SRB-2 is a halophilous and moderately mesophilous SRB community. The optimal conditions for its growth are as follows: temperature of 30-40 degrees C and pH value of 7.
View Article and Find Full Text PDF