Publications by authors named "Yuxin Gao"

Objective: This study is designed to investigate the roles of MMP-2, MMP-9, and MMP-13 in intervertebral disc destruction resulting from different types of spinal infections and their correlations with clinical quantitative data.

Methods: Disc tissue samples were collected from 60 patients with spinal infections (20 cases each of STB, BS, and PS in the infection group) and 20 patients with intervertebral disc herniation (control group). The expressions of MMP-2, MMP-9, and MMP-13 were detected by RT-qPCR.

View Article and Find Full Text PDF

Tactile sensory information obtained from oneself or others may provide a calming effect and has been shown to enhance participants' motor control. The extent to which these touch activities may support motor inhibition and the related electrophysiological mechanisms remain unknown. Here, we investigated these effects in twenty healthy volunteers via electroencephalography under 3 touching conditions (self-touch, other-touch, and no-touch) during a stop-signal task.

View Article and Find Full Text PDF

Recently, the dissipative soliton (DS) generation in the positive fourth-order-dispersion (FOD) fiber laser has been theoretically predicted, namely dissipative pure-quartic soliton (DPQS), featuring a higher energy-scaling ability compared to conventional DS dominated by positive group velocity dispersion. Here, we discover that the formation of spectral sidebands is always accompanying by the stabilized DPQS in the fiber laser, which is different from the conventional DS. Due to the combination of positive FOD and self-phase modulation, low- and high-frequency components are distributed at the leading and trailing edges of the pulse, forming the pedestals that propagate with it.

View Article and Find Full Text PDF

The power conversion efficiencies (PCEs) of polycrystalline perovskite solar cells (PC-PSCs) have now reached a plateau after a decade of rapid development, leaving a distinct gap from their Shockley-Queisser limit. To continuously mitigate the PCE deficit, nonradiative carrier losses resulting from defects should be further optimized. Single-crystal perovskites are considered an ideal platform to study the efficiency limit of perovskite solar cells due to their intrinsically low defect density, as demonstrated in bulk single crystals.

View Article and Find Full Text PDF
Article Synopsis
  • Fluid shear stress is crucial for regulating cell behavior, maintaining tissue health, and influencing disease, necessitating an understanding of how cells respond to different shear stress levels.
  • A new flow-resistance module with three microchannels was created to simulate various shear stress levels, validated through computational simulations and experiments.
  • The study examined cellular responses, including gene expression and changes in structure, under different shear stresses, demonstrating that the module effectively characterizes these cellular responses.
View Article and Find Full Text PDF

Perovskite thin-film transistors (TFTs) simultaneously possessing exceptional carrier transport capabilities, nonvolatile memory effects, and photosensitivity have recently attracted attention in fields of both complementary circuits and neuromorphic computing. Despite continuous performance improvements through additive and composition engineering of the channel materials, the equally crucial dielectric/channel interfaces of perovskite TFTs have remained underexplored. Here, it is demonstrated that engineering the dielectric/channel interface in 2D tin perovskite TFTs not only enhances the performance and operational stability for their utilization in complementary circuits but also enables efficient synaptic behaviors (optical information sensing and storage) under an extremely low operating voltage of -1 mV at the same time.

View Article and Find Full Text PDF

A major factor limiting the development of somatic cell nuclear transfer (SCNT) technology is the low success rate of pregnancy, mainly due to placental abnormalities disrupting the maternal-fetal balance during pregnancy. Although there has been some progress in research on the abnormal enlargement of cloned bovine placenta, there are still few reports on the direct regulatory mechanisms of enlarged cloned bovine placenta tissue. In this study, we conducted sequencing and analysis of transcriptomics, proteomics, and metabolomics of placental tissues from SCNT cattle ( = 3) and control (CON) cattle ( = 3).

View Article and Find Full Text PDF

Pt-based alloy with high mass activity and durability is highly desired for proton exchange membrane fuel cells, yet a great challenge remains due to the high mass transport resistance near catalysts with lowering Pt loading. Herein, an extensible approach employing atomic layer deposition to accurately introduce a gas-phase metal precursor into platinum nanoparticles (NPs) pre-filled mesoporous channels is reported, achieved by controlling both the deposition site and quantity. Following the spatially confined alloying treatment, the prepared PtSn alloy catalyst within mesopores demonstrates a small size and homogeneous distribution (2.

View Article and Find Full Text PDF

While great efforts have been made to improve the electrocatalytic activity of existing materials toward hydrogen evolution reaction (HER), it is also importance for searching new type of nonprecious HER catalysts to realize the practical hydrogen evolution. Herein, we firstly report nanocrystalline transition metal tetraborides (TMB, TM=W and Mo) as an efficient HER electrocatalyst has been synthesized by a single-step solid-state reaction. The optimized nanocrystalline WB exhibits an overpotential as low as 172 mV at 10 mA/cm and small Tafel slope of 63 mV/dec in 0.

View Article and Find Full Text PDF

Based on the entropy weight TOPSIS method to measure the development level of "zero-waste cities" in China from 2004 to 2021, the social network analysis method and spatial Durbin model were used to explore the spatial correlation network structure and impact mechanism of the development level of "zero-waste cities." The results showed that: ① The development level of "zero-waste cities" was generally on the decline in the whole country and the eastern and central regions. However, it was on the rise in the western regions.

View Article and Find Full Text PDF
Article Synopsis
  • Tissue-inspired layered structural hydrogels are gaining popularity for applications in artificial muscles, wound healing, wearable tech, and soft robotics, but creating them efficiently remains a hurdle.
  • The authors introduce an interfacial catalytic self-growth method utilizing catechol chemistry that enables rapid growth of hydrogel layers by using a tannic acid-metal ion complex (like TA-Fe) to trigger polymerization directly at the interface without needing bulk solutions.
  • This innovative strategy allows for precise control over the growth conditions, enabling the customization of layered hydrogels and their properties, and even leads to the development of self-adhesive versions that can function as wearable strain sensors.
View Article and Find Full Text PDF

Background: Spinal Tuberculosis (STB) is a common cause of spinal malformation caused by extrapulmonary tuberculosis in developing countries, which seriously affects the quality of life of patients. It was found that the expression of miRNAs in macrophages was stable, specific and readily available after Mycobacterium tuberculosis (MTB) infection. Our research group determined the differential expression of miR-29a-3p in the vertebra of spinal tuberculosis and intervertebral disc lesions through RNAs chip screening and bioinformatics analysis.

View Article and Find Full Text PDF

Depression is the most common chronic mental illness and is characterized by low mood, insomnia, and affective disorders. However, its pathologic mechanisms remain unclear. Numerous studies have suggested that the ghrelin/GHSR system may be involved in the pathophysiologic process of depression.

View Article and Find Full Text PDF

Two-dimensional (2D) materials, especially graphene-based materials, have important implications for tissue regeneration and biomedicine due to their large surface area, transport properties, ease of functionalization, biocompatibility, and adsorption capacity. Despite remarkable progress in the field of tissue regeneration and biomedicine, there are still problems such as unclear long-term stability, lack of experimental data, and detection accuracy. This paper reviews recent applications of graphene-based materials in tissue regeneration and biomedicine and discusses current issues and prospects for the development of graphene-based materials with respect to promoting the regeneration of tendons, neuronal cells, bone, chondrocytes, blood vessels, and skin, as well as applications in sensing, detection, anti-microbial activity, and targeted drug delivery.

View Article and Find Full Text PDF

Background: Heart failure (HF) is a complex cardiovascular syndrome with high mortality. Santalum album L. (SAL) is a traditional Chinese medicine broadly applied for various diseases treatment including HF.

View Article and Find Full Text PDF

Biodegradable polymer blends filled with rod-like polysaccharide nanocrystals have attracted much attention because each component in this type of ternary composites is biodegradable, and the final properties are more easily tailored comparing to those of binary composites. In this work, chitin nanocrystals (ChNCs) were used as nanofiller for the biodegradable poly(ε-caprolactone) (PCL)/polylactide (PLA) immiscible blend to prepare ternary composites for a crystallization study. The results revealed that the crystallization behavior of PCL/PLA blend matrices strongly depended on the surface properties of ChNCs.

View Article and Find Full Text PDF

Light-driven micro/nanorobots (LMNRs) are tiny, untethered machines with great potential in fields like precision medicine, nano manufacturing, and various other domains. However, their practicality hinges on developing light-manipulation strategies that combine versatile functionalities, flexible design options, and precise controllability. Our study introduces an innovative approach to construct micro/nanorobots (MNRs) by utilizing micro/nanomotors as fundamental building blocks.

View Article and Find Full Text PDF

Objectives: The objective of this study is to evaluate the value of S100-A8 protein as a diagnostic marker for spinal tuberculosis and to explore its role in the potential pathogenesis of spinal tuberculosis (STB).

Methods: The peripheral blood of 100 spinal tuberculosis patients admitted to the General Hospital of Ningxia Medical University from September 2018 to June 2021 were collected as the observation group, and the peripheral blood of 30 healthy medical examiners were collected as the control group. Three samples from the observation group and three samples from the control group were selected for proteomics detection and screening of differential proteins.

View Article and Find Full Text PDF

Trichomonas gallinae (T. gallinae) is a globally distributed protozoan parasite and could cause serious damage to the pigeon industry. MiRNAs have important roles in regulating parasite infection, but its impacts on T.

View Article and Find Full Text PDF

The mitochondrial gene order in Thysanoptera is notably distinct and highly rearranged, with each species exhibiting its own unique arrangement. To elucidate the relationship between gene rearrangements and phylogeny, the complete mitochondrial genome (mitogenome) of the wheat pest, Aptinothrips stylifer, was sequenced and assembled, spanning a total length of 16,033 bp. Compared with the ancestral arthropod mitogenome, significant rearrangement differences were evident in A.

View Article and Find Full Text PDF

YIM F302 was compared with N5 to examine the taxonomic relationship between the two type strains. The 16S rRNA gene sequence of YIM F302 showed high similarity (99.9 %) to that of N5.

View Article and Find Full Text PDF

Optically controlled neuromodulation is a promising approach for basic research of neural circuits and the clinical treatment of neurological diseases. However, developing a non-invasive and well-controllable system to deliver accurate and effective neural stimulation is challenging. Micro/nanorobots have shown great potential in various biomedical applications because of their precise controllability.

View Article and Find Full Text PDF

In this paper, we implement integrated magnetic flux concentrators (MFCs) combined with a multi-frequency modulation method to achieve high-magnetic-detection sensitivity using a nuclear spin on the solid nuclear spin in diamonds. First, we excited the nuclear spin in diamonds using a continuous-wave technique, and a linewidth of 1.37 MHz and frequency resolution of 79 Hz were successfully obtained, which is reduced by one order of the linewidth, and increased by 56 times in frequency resolution compared to that excited by an electron spin.

View Article and Find Full Text PDF

Composite organohydrogels have been widely used in wearable electronics. However, it remains a great challenge to develop mechanically robust and multifunctional composite organohydrogels with good dispersion of nanofillers and strong interfacial interactions. Here, multifunctional nanofiber composite reinforced organohydrogels (NCROs) are prepared.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnmu0kgr23a0d6lij2ljd2klauf39oife): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once