A critical challenge in solid polymer lithium batteries is developing a polymer matrix that can harmonize ionic transportation, electrochemical stability, and mechanical durability. We introduce a novel polymer matrix design by deciphering the structure-function relationships of polymer side chains. Leveraging the molecular orbital-polarity-spatial freedom design strategy, a high ion-conductive hyperelastic ternary copolymer electrolyte (CPE) is synthesized, incorporating three functionalized side chains of poly-2,2,2-Trifluoroethyl acrylate (PTFEA), poly(vinylene carbonate) (PVC), and polyethylene glycol monomethyl ether acrylate (PEGMEA).
View Article and Find Full Text PDFAn anion-rich electric double layer (EDL) region is favorable for fabricating an inorganic-rich solid-electrolyte interphase (SEI) towards stable lithium metal anode in ester electrolyte. Herein, cetyltrimethylammonium bromide (CTAB), a cationic surfactant, is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating. In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO/FSI anions in the EDL region due to the positively charged CTA.
View Article and Find Full Text PDFCopper-catalyzed dearomatization and difunctionalization of pyridines have been disclosed, in which bromodifluoro--arylacetamide was sliced into five fragments and three or four of them were transferred to pyridine partners. Through this reaction, novel -difluoromethyl-2-imine dihydropyridine derivatives can be conveniently accessed from commercially available 4-amino substituted pyridines. This strategy demonstrates a novel fluorination method featuring high atom economy, environmental friendliness, an easily available catalyst, and simple operation.
View Article and Find Full Text PDFTissue engineering for articular cartilage repair has shown success in ensuring the integration of neocartilage with surrounding tissue, but the rapid restoration of biomechanical and biotribological functions remains a significant challenge. Poly (vinyl alcohol) (PVA) hydrogel is regarded as a potential articular cartilage replacement for its fair mechanical strength and low surface friction, while its lack of bioactivity limits its utility. Combining the advantages of tissue engineering materials and PVA hydrogel, we developed a semi-degradable porous PVA hydrogel through addition of ploy (lactic-co-glycolic acid) (PLGA) microspheres and salt-leaching technique.
View Article and Find Full Text PDF