An approach for generating phase-coded coherent microwave pulse trains at high frequencies is proposed and demonstrated based on an actively mode-locked optoelectronic parametric oscillator (AML-OEPO), where an electrical mixer is inserted into the cavity of an optoelectronic oscillator (OEO) to achieve both mode locking and parameter oscillation. The driving signal applied to the mixer is a low-frequency sinusoidal signal with voltage polarity coding, where the frequency is the same as the free spectral range (FSR) of the OEO cavity, and the duration of each voltage polarity coding bit is identical to the loop delay. As a result, phase-coded coherent microwave pulse trains can be generated, where the pulse interval is equal to the loop delay due to the active mode locking effect, and the phase coding period is equal to a multiple integer of the loop delay due to parameter oscillation.
View Article and Find Full Text PDFWe propose and experimentally demonstrate an injection-locked broadband optoelectronic oscillator (OEO) to generate freely tunable phase-locked dual-frequency microwave signals. When two single-tone signals inside and outside the passband of the electrical broadband bandpass filter (BPF) are, respectively, injected into the OEO, a phase-locked dual-frequency microwave signal with ultra-low near-end side-mode spurs can be generated from the OEO cavity. Therefore, one frequency of the output signal is equal to the frequency of the injected signal within the BPF, and the other frequency is equal to the sum frequency or the differential frequency of two injected signals.
View Article and Find Full Text PDFRolling shutter based optical camera communication (RS-OCC), a promising candidate of optical wireless communication (OWC), has the advantage of unlicensed spectrum and no electromagnetic interference. Since RS-OCC can use the built-in camera of a smartphone as a receiver, it can provide flexible, low-cost, and timely private information exchange between mobile users. However, the enhancement of data throughput for the RS-OCC is challenging.
View Article and Find Full Text PDFTraditional coherent beam combination (CBC) system architecture has revealed inadequacies in meeting the concurrent demands of large-scale deployment and high-bandwidth requirements. Addressing this challenge, we propose a distributed CBC system architecture based on the optimized stochastic parallel gradient descent (SPGD) algorithm. Our strategy segments the large-scale laser array into multiple independent smaller-scale subarrays, ensuring their efficient phase convergence through the introduction of corresponding reference lasers while avoiding interference when integrating different subarrays.
View Article and Find Full Text PDFBackground: Chrysanthemi Flos is a traditional Chinese medicine with a long history of medicinal use. Prior research suggests that the intrinsic composition of Chrysanthemi Flos is affected by shade-drying and oven-drying methods. Nevertheless, the effects of these methods on the proteins and metabolites of Chrysanthemi Flos have not been extensively studied.
View Article and Find Full Text PDFThis study experimentally demonstrates a large measurement range curvature sensor based on a Mach-Zehnder interferometer (MZI) in a triple-ring-core fiber (TRCF). The sensor is fabricated by fusion splicing a segment of TRCF between two pieces of single-mode fiber (SMF), forming the SMF-TRCF-SMF sandwich structure. Since the TRCF can support the propagation of a few guided modes, the fundamental mode interferes with high-order modes in the sensing part to produce a periodic interference spectrum.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Curcumae Radix (CR) is a widely used traditional Chinese medicine with significant pharmaceutical importance, including enhancing blood circulation and addressing blood stasis. This study aims to establish an integrated and rapid quality assessment method for CR from various botanical origins, based on chemical components, antiplatelet aggregation effects, and Fourier transform near-infrared (FT-NIR) spectroscopy combined with multivariate algorithms. Firstly, ultra-performance liquid chromatography-photodiode array (UPLC-PDA) combined with chemometric analyses was used to examine variations in the chemical profiles of CR.
View Article and Find Full Text PDFOptical camera communication (OCC) has garnered worldwide research attention, due to its immunity to electromagnetic interference (EMI) and efficient utilization of spectrum resources. However, the limited bandwidth of the OCC system and the timing offset of the camera result in low system throughput. To enhance the OCC throughput, we propose and experimentally demonstrate a frame-rate adaptive fractionally spaced equalization algorithm (FA-FSE) for the joint mitigation of severe inter-symbol interference (ISI) and timing offset arising in OCC.
View Article and Find Full Text PDFAiming to further improve the spectral efficiency (SE) of a continuous spectrum modulated nonlinear frequency division multiplexing (CS-NFDM) system, we propose a novel ,to the best of our knowledge, multiple-signal-joint-processing (MSJP)-based guard interval (GI) shortening method. In this method, multiple NFDM time-domain signals are jointly processed as a whole to carry out nonlinear Fourier transform and inverse nonlinear Fourier transform (NFT-INFT) operations. These operations can fuse the multiple NFDM time-domain signals together, which is equivalent to the corresponding inverse process of a fiber transmission.
View Article and Find Full Text PDFThis study collected multidimensional feature data such as spectra, texture, and component contents of Polygonati Rhizoma from different origins and varieties (Polygonatum kingianum Coll. et Hemsl from Yunnan and Guizhou; Polygonatum cyrtonema Hua from Anhui and Jiangxi; Polygonatum sibiricum Red from Hunan). Multivariate statistical analysis was used to select 39 characteristic factors for distinguishing PR origins and 14 characteristic factors for discriminating PR varieties (VIP > 1 and P < 0.
View Article and Find Full Text PDFA nonlinear Tomlinson-Harashima precoding (NTHP) scheme has been verified for its capability to effectively address both the linear and nonlinear inter-symbol interferences (ISIs) arising in the intensity-modulation direct-detection (IM-DD) fiber optics transmission. Nevertheless, the application of the NTHP scheme may significantly increase the number of levels for the intensity modulated signals, resulting in the reduction of both eye width and receiver sensitivity. Here, we propose a fractionally spaced NTHP with a weight clustering (FS-NTHP-WC) scheme.
View Article and Find Full Text PDFThe performance of high-speed intensity modulation direct detection (IM-DD) transmissions is severely degraded due to the occurrence of multipath interference (MPI), especially when a higher-order modulation format is utilized. Here, we propose and demonstrate, for the first time to the best of our knowledge, that a Nyquist subcarrier modulation (Nyquist-SCM) format inherently exhibits resistance to the MPI. We experimentally evaluate the MPI tolerance by transmitting 56 Gbit/s PAM-4 signals and Nyquist-SCM 16QAM signals over the 2 km standard single-mode fiber (SSMF) when the C-band semiconductor laser with a linewidth of 1.
View Article and Find Full Text PDFTransverse mode switchable ultrashort optical pulses with narrow bandwidths can create potential for exploring what we believe are new physical effects. We demonstrate the generation of transverse mode switchable ultrashort pulses with narrow bandwidths in an all-fiber mode-locked laser by exploring a mode-selective photonic lantern (MSPL). The laser cavity serves not only as a ring resonator but also as an intrinsic spectral filter.
View Article and Find Full Text PDFAs the core sensing elements of ultra-long fiber interferometer, the distributed thermal strain difference of the fiber rings can cause extra noise of the flexural disk, resulting in a penalty of the deterioration accuracy. In this paper, the thermal strain distribution characteristics of the fiber ring are firstly analyzed by the finite element method (FEM), and the distribution result is consistent with that demonstrated by the Rayleigh optical frequency-domain reflectometry (R-OFDR) strain measurement. The interferometer phase noise caused by the distributed strain difference is further studied by constructing a fully symmetric polarization-maintaining fiber-ring Mach-Zehnder interferometer (MZI) with an arm length of over 100 meters.
View Article and Find Full Text PDFWe propose a high-speed multimode fiber short-reach optical interconnect system based on a Kramers-Kronig (KK) field reconstruction with the mode division multiplexing (MDM) and polarization division multiplexing (PDM) technology. In this work, the LP01, LP21a, LP21b, and LP02 modes are selected as independent channels to carry information. The demonstration achieved the 800 Gb/s net data rate per wavelength with a bit-rate-distance-product (BDP) of 8 Tb/s·km.
View Article and Find Full Text PDFWe propose a rapid and precise scheme for characterizing the full-field frequency response of a thin-film lithium niobate-based intensity modulator (TFLN-IM) via a specially designed multi-tone microwave signal. Our proposed scheme remains insensitive to the bias-drift of IM. Experimental verification is implemented with a self-packaged TFLN-IM with a 3 dB bandwidth of 30 GHz.
View Article and Find Full Text PDFChaotic waveforms with Gaussian distributions are significant for laser-chaos-based applications such as random number generation. By exploring the injection parameter space of the optical injection semiconductor lasers, we numerically investigate the associated probability density functions of the generated chaotic waveforms when different high-pass filters with different cutoff frequencies are used. Our results demonstrate that the chaotic waveforms with Gaussian probability density functions can be obtained once the cutoff frequency of the high-pass filter is larger than the laser relaxation resonance frequency.
View Article and Find Full Text PDFThe multi-eigenvalue multiplexing-based discrete spectrum-modulated nonlinear frequency-division multiplexing (DS-NFDM) system with higher-order modulation format has been demonstrated experimentally. After designing the coefficients of the eigenvalue set and the constellation point distribution of 16-amplitude phase shift keying (16-APSK), the realizations of 14-, 30-, and 46-eigenvalue multiplexed DS-NFDM signals have been implemented. The results show that 46-eigenvalue and 30-eigenvalue multiplexed DS-NFDM signals can transmit 50 km and 400 km over a nonzero dispersion-shifted fiber (NZDSF) under soft-decision forward error correction (SD-FEC) threshold of 2.
View Article and Find Full Text PDFTo improve the spectral efficiency of a full spectrum modulated nonlinear frequency division multiplexing (FS-NFDM) system, a blind frequency offset estimation (FOE) method has been proposed. The approach based on the minimum phase correction error can achieve high estimation accuracy of sub-MHz without need of any training symbols. Furthermore, in order to reduce the computational complexity, an eigenvalue-shift method is used to get a coarse search interval of FO, and then the one-dimensional optimization algorithm based on golden section search and parabolic interpolation is used to get the optimal FOE for the coarse search interval.
View Article and Find Full Text PDFThe fulfilment of the adiabatic criterion is indispensable for the realization of a low-loss photonic lantern (PL), concurrently imposing a stringent restriction on the taper transition length of the PL. Here, by relaxing the adiabatic criterion, a low-loss and compact PL based on a step-index double cladding fiber (SI-DCF) is theoretically proposed and experimentally demonstrated. The use of SI-DCF can reduce the mode field diameter (MFD) expansion ratio during the tapering processing and greatly decrease the taper transition length required for adiabatic tapering.
View Article and Find Full Text PDFWe theoretically and experimentally verify that, the bidirectional hybrid-mode pumping scheme can address the optimization problem of trade-off between high gain and low differential modal gain (DMG) of four-mode erbium-doped fiber amplifier (4M-EDFA), in comparison with traditional both forward and backward hybrid-mode pumping scheme. It is noticed that, when the total pump power is fixed, the bidirectional hybrid-mode pumping scheme can not only achieve higher gain, but also suppress DMG due to different overlap integrals for the forward and backward pumping schemes. The bidirectional hybrid-mode pumped 4M-EDFA is developed with the forward pumping at LP mode and the backward pumping at LP mode, under a pump power ratio of 30%:70%.
View Article and Find Full Text PDFAs for the photonic interconnection based on the multiple-lane intensity modulation direct detection (IM-DD) transmission, both intra-channel inter-symbol-interference (ISI) originating from bandwidth constraint, and inter-channel performance discrepancy emerging from inter-channel component differences are the major bottleneck for the throughput enhancement. Here, we propose a pairwise Tomlinson-Harshima precoding (P-THP) scheme, in order to simultaneously deal with both intra-channel ISI and inter-channel performance discrepancy. The effective function of the proposed P-THP scheme is experimentally evaluated by transmitting 4-channel 81-GBaud PAM4 signals over 2 km standard single-mode fiber (SSMF).
View Article and Find Full Text PDFVectorial holography through a strongly scattering medium can facilitate various applications in optics and photonics. However, the realization of vectorial holography with arbitrary distribution of optical intensity is still limited because of experimental noise during the calibration of vectorial transmission matrix (TM) and reconstruction noise during the retrieval of input wavefront for a given holographic target. Herein, we propose and experimentally demonstrate the vectorial holography with arbitrary distribution of optical intensity over a multimode fiber (MMF) using the Tikhonov regularization.
View Article and Find Full Text PDF