Carbapenem resistance mediated by metallo-β-lactamases (MBL) such as New Delhi metallo-β-lactamase-1 (NDM-1) has become a major factor threatening the efficacy of essential β-lactam antibiotics. Starting from hit fragment dipicolinic acid (DPA), 8-hydroxy- and 8-sulfonamido-quinoline-2-carboxylic acids were developed as inhibitors of NDM-1 with highly improved inhibitory activity and binding affinity. The most active compounds formed reversibly inactive ternary protein-inhibitor complexes with two zinc ions as proven by native protein mass spectrometry and bio-layer interferometry.
View Article and Find Full Text PDFThe surface ligand environment plays a dominant role in determining the physicochemical, optical, and electronic properties of colloidal quantum dots (CQDs). Specifically, the ligand-related electronic traps are the main reason for the carrier nonradiative recombination and the energetic losses in colloidal quantum dot solar cells (CQDSCs), which are usually solved with numerous advanced ligand exchange reactions. However, the synthesis process, as the essential initial step to control the surface ligand environment of CQDs, has lagged behind these post-synthesis ligand exchange reactions.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2022
Solution-processed solar cells are promising for the cost-effective, high-throughput production of photovoltaic devices. Colloidal quantum dots (CQDs) are attractive candidate materials for efficient, solution-processed solar cells, potentially realizing the broad-spectrum light utilization and multi-exciton generation effect for the future efficiency breakthrough of solar cells. The emerging quantum junction solar cells (QJSCs), constructed by n- and p-type CQDs only, open novel avenue for all-quantum-dot photovoltaics with a simplified device configuration and convenient processing technology.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
Colloidal quantum dots (CQDs) have a large specific surface area and a complex surface structure. Their properties in diverse optoelectronic applications are largely determined by their surface chemistry. Therefore, it is essential to investigate the surface chemistry of CQDs for improving device performance.
View Article and Find Full Text PDF