Publications by authors named "Yuwaraj Kadariya"

Mesothelioma is a lethal cancer of the serosal lining of the body cavities. Risk factors include environmental and genetic factors. Asbestos exposure is considered the principal environmental risk factor, but other carcinogenic mineral fibers, such as erionite, also have a causal role.

View Article and Find Full Text PDF

Mesothelioma is an incurable cancer of the mesothelial lining often caused by exposure to asbestos. Asbestos-induced inflammation is a significant contributing factor in the development of mesothelioma, and genetic factors also play a role in the susceptibility to this rapidly progressive and treatment-resistant malignancy. Consequently, novel approaches are urgently needed to treat mesothelioma and prevent or reduce the overall incidence of this fatal disease.

View Article and Find Full Text PDF

Unlabelled: Asbestos and BAP1 germline mutations are risk factors for malignant mesothelioma (MM). While it is well accepted that amphibole asbestos is carcinogenic, the role of serpentine (chrysotile) asbestos in MM has been debated. To address this controversy, we assessed whether minimal exposure to chrysotile could significantly increase the incidence and rate of MM onset in germline Bap1-mutant mice.

View Article and Find Full Text PDF

Malignant mesothelioma (MM) is an incurable cancer of the serosal lining that is often caused by exposure to asbestos. Therefore, novel agents for the prevention and treatment of this disease are urgently needed. Asbestos induces the release of pro-inflammatory cytokines such as IL-1β and IL-6, which play a role in MM development.

View Article and Find Full Text PDF

Although alveolar macrophages play a critical role in malignant transformation of mesothelial cells following asbestos exposure, inflammatory and oxidative processes continue to occur in the mesothelial cells lining the pleura that may contribute to the carcinogenic process. Malignant transformation of mesothelial cells following asbestos exposure occurs over several decades; however, amelioration of DNA damage, inflammation, and cell injury may impede the carcinogenic process. We have shown in an in vitro model of asbestos-induced macrophage activation that synthetic secoisolariciresinol diglucoside (LGM2605), given preventively, reduced inflammatory cascades and oxidative/nitrosative cell damage.

View Article and Find Full Text PDF

Malignant mesothelioma (MMe) is a rare malignancy originating from the linings of the pleural, peritoneal and pericardial cavities. The best-defined risk factor is exposure to carcinogenic mineral fibers (e.g.

View Article and Find Full Text PDF

Unlabelled: Because loss of the NF2 tumor suppressor gene results in p21-activated kinase (Pak) activation, PAK inhibitors hold promise for the treatment of NF2-deficient tumors. To test this possibility, we asked if loss of Pak2, a highly expressed group I PAK member, affects the development of malignant mesothelioma in Nf2;Cdkn2a-deficient (NC) mice and the growth properties of NC mesothelioma cells in culture. In vivo, deletion of Pak2 resulted in a markedly decreased incidence and delayed onset of both pleural and peritoneal malignant mesotheliomas in NC mice.

View Article and Find Full Text PDF

There is irrefutable evidence that germline BRCA1-associated protein 1 gene (BAP1) mutations contribute to malignant mesothelioma (MM) susceptibility. However, BAP1 mutations are not found in all cases with evidence of familial MM or in other high-risk cancer families affected by various cancers, including MM. The goal of this study was to use whole genome sequencing (WGS) to determine the frequency and types of germline gene variants occurring in 12 MM patients who were selected from a series of 141 asbestos-exposed MM patients with a family history of cancer but without a germline BAP1 mutation.

View Article and Find Full Text PDF

Pleural malignant mesothelioma is a therapy-resistant cancer affecting the serosal lining of the thoracic cavity. Mutations/deletions of , and are the most frequent genetic lesions in human malignant mesothelioma. We introduced various combinations of these deletions in the pleura of conditional knockout (CKO) mice, focusing on the contribution of loss.

View Article and Find Full Text PDF

Melanoma is an aggressive neoplasm with increasing incidence that is classified by the NCI as a recalcitrant cancer, i.e., a cancer with poor prognosis, lacking progress in diagnosis and treatment.

View Article and Find Full Text PDF

Malignant mesothelioma (MM) is a therapy-resistant cancer arising primarily from the lining of the pleural and peritoneal cavities. The most frequently altered genes in human MM are cyclin-dependent kinase inhibitor 2A (CDKN2A), which encodes components of the p53 (p14ARF) and RB (p16INK4A) pathways, BRCA1-associated protein 1 (BAP1), and neurofibromatosis 2 (NF2). Furthermore, the p53 gene (TP53) itself is mutated in ~15% of MMs.

View Article and Find Full Text PDF

Exposure to asbestos is causally associated with the development of malignant mesothelioma, a cancer of cells lining the internal body cavities. Malignant mesothelioma is an aggressive cancer resistant to all current therapies. Once inhaled or ingested, asbestos causes inflammation in and around tissues that come in contact with these carcinogenic fibers.

View Article and Find Full Text PDF

Individuals harboring inherited heterozygous germline mutations in BAP1 are predisposed to a range of benign and malignant tumor types, including malignant mesothelioma, melanoma, and kidney carcinoma. However, evidence to support a tumor-suppressive role for BAP1 in cancer remains contradictory. To test experimentally whether BAP1 behaves as a tumor suppressor, we monitored spontaneous tumor development in three different mouse models with germline heterozygous mutations in Bap1, including two models in which the knock-in mutations are identical to those reported in human BAP1 cancer syndrome families.

View Article and Find Full Text PDF

We report a high-risk cancer family with multiple mesotheliomas, cutaneous melanomas, basal cell carcinomas, and meningiomas segregating with a germline nonsense mutation in BAP1 (c.1938T>A; p.Y646X).

View Article and Find Full Text PDF

We report a family with domestic exposure to asbestos and diagnosis of multiple cancers, including eight pleural malignant mesotheliomas and several other lung or pleural tumors. DNA sequence analysis revealed no evidence for an inherited mutation of BAP1. Sequence analysis of other potentially relevant genes, including TP53, CDKN2A, and BARD1, also revealed no mutation.

View Article and Find Full Text PDF

Constitutive activation of AKT is a frequent occurrence in the development of human T-cell acute lymphocytic leukemia/lymphomas (T-ALLs), due largely to inactivation of PTEN. Up regulation of MYC is also commonly observed in human T-ALLs. We previously demonstrated that expression of a constitutively active form of Lck-Akt2 alone is sufficient to initiate T-cell lymphoma in mice, and that tumor formation typically requires up regulation of Myc or Dlx5 caused by specific chromosomal rearrangements.

View Article and Find Full Text PDF

Methylthioadenosine Phosphorylase (MTAP) is a tumor suppressor gene that is frequently deleted in human cancers and encodes an enzyme responsible for the catabolism of the polyamine byproduct 5'deoxy-5'-methylthioadenosine (MTA). To elucidate the mechanism by which MTAP inhibits tumor formation, we have reintroduced MTAP into MTAP-deleted HT1080 fibrosarcoma cells. Expression of MTAP resulted in a variety of phenotypes, including decreased colony formation in soft-agar, decreased migration, decreased in vitro invasion, increased matrix metalloproteinase production, and reduced ability to form tumors in severe combined immunodeficiency mice.

View Article and Find Full Text PDF

Malignant mesotheliomas are highly aggressive tumors usually caused by exposure to asbestos. Germline-inactivating mutations of BAP1 predispose to mesothelioma and certain other cancers. However, why mesothelioma is the predominate malignancy in some BAP1 families and not others, and whether exposure to asbestos is required for development of mesothelioma in BAP1 mutation carriers are not known.

View Article and Find Full Text PDF

The goal of targeted therapy is to match a selective drug with a genetic lesion that predicts for drug sensitivity. In a diverse panel of cancer cell lines, we found that the cells most sensitive to focal adhesion kinase (FAK) inhibition lack expression of the neurofibromatosis type 2 (NF2) tumor suppressor gene product, Merlin. Merlin expression is often lost in malignant pleural mesothelioma (MPM), an asbestos-induced aggressive cancer with limited treatment options.

View Article and Find Full Text PDF

Malignant mesothelioma is a highly aggressive, asbestos-related cancer frequently marked by mutations of both NF2 and CDKN2A. We demonstrate that germline knockout of one allele of each of these genes causes accelerated onset and progression of asbestos-induced malignant mesothelioma compared with asbestos-exposed Nf2(+/-) or wild-type mice. Ascites from some Nf2(+/-);Cdkn2a(+/-) mice exhibited large tumor spheroids, and tail vein injections of malignant mesothelioma cells established from these mice, but not from Nf2(+/-) or wild-type mice, produced numerous tumors in the lung, suggesting increased metastatic potential of tumor cells from Nf2(+/-);Cdkn2a(+/-) mice.

View Article and Find Full Text PDF

Objective: The gene encoding the methionine salvage pathway methylthioadenosine phosphorylase (MTAP) is a tumor suppressor gene that is frequently inactivated in a wide variety of human cancers. In this study, we have examined if heterozygosity for a null mutation in Mtap (Mtap(lacZ)) could accelerate tumorigenesis development in two different mouse cancer models, Eμ-myc transgenic and Pten(+/-) .

Methods: Mtap Eμ-myc and Mtap Pten mice were generated and tumor-free survival was monitored over time.

View Article and Find Full Text PDF

Methylthioadenosine phosphorylase (MTAP), a key enzyme in the methionine salvage pathway, is inactivated in a variety of human cancers. Since all human tissues express MTAP, it would be of potential interest to identify compounds that selectively inhibit the growth of MTAP-deficient cells. To determine if MTAP inactivation could be targeted, the authors have performed a differential chemical genetic screen in isogenic MTAP(+) and MTAP(-) Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Large homozygous deletions of 9p21 that inactivate CDKN2A, ARF, and MTAP are common in a wide variety of human cancers. The role for CDKN2A and ARF in tumorigenesis is well established, but whether MTAP loss directly affects tumorigenesis is unclear. MTAP encodes the enzyme methylthioadenosine phosphorylase, a key enzyme in the methionine salvage pathway.

View Article and Find Full Text PDF

4-Methylthio-2-oxobutanoic acid (MTOB) is the final compound of the methionine salvage pathway that converts the polyamine byproduct methylthioadenosine to adenine and methionine. Here we find that MTOB inhibits growth of several human cell lines in a dose-dependent manner. Growth inhibition was specific for MTOB as we did not observe any inhibition with other chemically related compounds.

View Article and Find Full Text PDF