We have successfully prepared the titanium dioxide (TiO) nanoparticles (NPs) and sulfur-incorporated graphitic carbon nitride (S-GCN)-modified carbon paste electrode (CPE). The CPEs modified with TiO NPs and S-GCN were employed for detecting and quantifying the skeletal muscle relaxant cyclobenzaprine hydrochloride (CBP) using cyclic voltammetry and square wave voltammetry (SWV) techniques. Optimal electrochemical conditions were indicated by the pH study results, with the highest peak current observed at a physiological pH of 7.
View Article and Find Full Text PDFA nanocomposite of Ce-doped ZnO/r-GO was synthesized using a conventional hydrothermal method. The synthesized nanocomposites were utilized for the purpose of sensitive and selective detection of cyclobenzaprine hydrochloride (CBP). The properties of the composite were extensively analyzed, including its morphology, structure, and electrochemical behavior.
View Article and Find Full Text PDFA sensitive and novel electrochemical senser, acetyl trimethylammonium bromide (CTAB)-immobilized nitrogen rich g-CN nanosheet modified carbon paste electrode was developed, for the electrochemical investigation of the anthelmintic drug Albendazole (ABZ) using voltammetric tools like cyclic and square wave voltammetry. The results showed that the modified carbon paste electrode exhibited remarkable electro-catalytic action towards the electrochemical oxidation of ABZ in a phosphate buffer solution at pH 3 compared to bare carbon paste electrode. The electrode material was characterized by CV, scanning electron microscopy (SEM), atomic force microscope (AFM), and electrochemical impedance spectroscopy (EIS).
View Article and Find Full Text PDF