Publications by authors named "Yuval Scher"

Gated first-passage processes, where completion depends on both hitting a target and satisfying additional constraints, are prevalent across various fields. Despite their significance, analytical solutions to basic problems remain unknown, e.g.

View Article and Find Full Text PDF

The escape dynamics of sticky particles from textured surfaces is poorly understood despite importance to various scientific and technological domains. In this work, we address this challenge by investigating the escape time of adsorbates from prevalent surface topographies, including holes/pits, pillars, and grooves. Analytical expressions for the probability density function and the mean of the escape time are derived.

View Article and Find Full Text PDF

Adsorption is the accumulation of a solute at an interface that is formed between a solution and an additional gas, liquid, or solid phase. The macroscopic theory of adsorption dates back more than a century and is now well-established. Yet, despite recent advancements, a detailed and self-contained theory of single-particle adsorption is still lacking.

View Article and Find Full Text PDF

How much time does it take for two molecules to react? If a reaction occurs upon contact, the answer to this question boils down to the classic first-passage time problem: find the time it takes for the two molecules to meet. However, this is not always the case as molecules switch stochastically between reactive and non-reactive states. The reaction is then said to be "gated" by the internal states of the molecules involved, which could have a dramatic influence on kinetics.

View Article and Find Full Text PDF

For two molecules to react they first have to meet. Yet, reaction times are rarely on par with the first-passage times that govern such molecular encounters. A prime reason for this discrepancy is stochastic transitions between reactive and nonreactive molecular states, which results in effective gating of product formation and altered reaction kinetics.

View Article and Find Full Text PDF

Filter-Exchange NMR Spectroscopy (FEXSY) is a method for measurement of apparent transmembranal water exchange rates. The experiment is comprised of two co-linear sequential pulsed-field gradient (PFG) blocks, separated by a mixing period in which exchange takes place. The first block remains constant and serves as a diffusion-based filter that removes signal coming from fast-diffusing water.

View Article and Find Full Text PDF