Publications by authors named "Yuval Milrad"

The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the ability to harness light as an energy source. The most successful type of photosynthesis utilizes a virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies on time and intensity scales of several orders of magnitude. Such rapid and steep changes in energy availability are potentially devastating for biological systems.

View Article and Find Full Text PDF

Calredoxin (CRX) is a calcium (Ca2+)-dependent thioredoxin (TRX) in the chloroplast of Chlamydomonas (Chlamydomonas reinhardtii) with a largely unclear physiological role. We elucidated the CRX functionality by performing in-depth quantitative proteomics of wild-type cells compared with a crx insertional mutant (IMcrx), two CRISPR/Cas9 KO mutants, and CRX rescues. These analyses revealed that the chloroplast NADPH-dependent TRX reductase (NTRC) is co-regulated with CRX.

View Article and Find Full Text PDF

Photosynthetic hydrogen production from microalgae is considered to have potential as a renewable energy source. Yet, the process has two main limitations holding it back from scaling up; (i) electron loss to competing processes, mainly carbon fixation and (ii) sensitivity to O which diminishes the expression and the activity of the hydrogenase enzyme catalyzing H production. Here we report a third, hitherto unknown challenge: We found that under anoxia, a slow-down switch is activated in photosystem II (PSII), diminishing the maximal photosynthetic productivity by three-fold.

View Article and Find Full Text PDF

Photosynthesis is a vital process, responsible for fixing carbon dioxide, and producing most of the organic matter on the planet. However, photosynthesis has some inherent limitations in utilizing solar energy, and a part of the energy absorbed is lost in the reduction of O2 to produce the superoxide radical (O2•-) via the Mehler reaction, which occurs principally within photosystem I (PSI). For decades, O2 reduction within PSI was assumed to take place solely in the distal iron-sulfur clusters rather than within the two asymmetrical cofactor branches.

View Article and Find Full Text PDF

The metabolism of green algae has been the focus of much research over the last century. These photosynthetic organisms can thrive under various conditions and adapt quickly to changing environments by concomitant usage of several metabolic apparatuses. The main electron coordinator in their chloroplasts, nicotinamide adenine dinucleotide phosphate (NADPH), participates in many enzymatic activities and is also responsible for inter-organellar communication.

View Article and Find Full Text PDF

The green alga Chlorella ohadii was isolated from a desert biological soil crust, one of the harshest environments on Earth. When grown under optimal laboratory settings it shows the fastest growth rate ever reported for a photosynthetic eukaryote and a complete resistance to photodamage even under unnaturally high light intensities. Here we examined the energy distribution along the photosynthetic pathway under four light and carbon regimes.

View Article and Find Full Text PDF

Photoproduction of hydrogen by green algae is considered a transitory release valve of excess reducing power and a potential carbon-free source of sustainable energy. It is generally accepted that the transitory production of hydrogen is governed by fast inactivation of hydrogenase by oxygen. However, our data suggest that photosynthetic electron loss to competing processes, mainly carbon fixation, stops hydrogen production, supports hydrogen uptake, and precedes the inevitable inactivation by oxygen.

View Article and Find Full Text PDF

Background: Hydrogen photo-production in green algae, catalyzed by the enzyme [FeFe]-hydrogenase (HydA), is considered a promising source of renewable clean energy. Yet, a significant increase in hydrogen production efficiency is necessary for industrial scale-up. We have previously shown that a major challenge to be resolved is the inferior competitiveness of HydA with NADPH production, catalyzed by ferredoxin-NADP(+)-reductase (FNR).

View Article and Find Full Text PDF

Photosynthetic hydrogen production in the microalga Chlamydomonas reinhardtii is catalyzed by two [FeFe]-hydrogenase isoforms, HydA1 and HydA2, both irreversibly inactivated upon a few seconds exposure to atmospheric oxygen. Until recently, it was thought that hydrogenase is not active in air-grown microalgal cells. In contrast, we show that the entire pool of cellular [FeFe]-hydrogenase remains active in air-grown cells due to efficient scavenging of oxygen.

View Article and Find Full Text PDF