Developmental patterns of behavior are variably organized in time and among different individuals. However, long-term behavioral diversity was previously studied using pre-defined behavioral parameters, representing a limited fraction of the full individuality structure. Here, we continuously extract ∼1.
View Article and Find Full Text PDFEarly-life experiences may promote stereotyped behavioral alterations that are dynamic across development time, but also behavioral responses that are variable among individuals, even when initially exposed to the same stimulus. Here, by utilizing longitudinal monitoring of individuals throughout development we show that behavioral effects of early-life starvation are exposed during early and late developmental stages and buffered during intermediate stages of development. We further found that both dopamine and serotonin shape the discontinuous behavioral responses by opposite and temporally segregated functions across development time.
View Article and Find Full Text PDFOptimality principles have been useful in explaining many aspects of biological systems. In the context of neural encoding in sensory areas, optimality is naturally formulated in a Bayesian setting as neural tuning which minimizes mean decoding error. Many works optimize Fisher information, which approximates the minimum mean square error (MMSE) of the optimal decoder for long encoding time but may be misleading for short encoding times.
View Article and Find Full Text PDFNeural decoding may be formulated as dynamic state estimation (filtering) based on point-process observations, a generally intractable problem. Numerical sampling techniques are often practically useful for the decoding of real neural data. However, they are less useful as theoretical tools for modeling and understanding sensory neural systems, since they lead to limited conceptual insight into optimal encoding and decoding strategies.
View Article and Find Full Text PDF