Background: Mutations in any of the five subunits of eukaryotic translation initiation factor 2B (eIF2B) can lead to an inherited chronic-progressive fatal brain disease of unknown aetiology termed leucoencephalopathy with vanishing white matter (VWM). VWM is one of the most prevalent childhood white matter disorders, which markedly deteriorates after inflammation or exposure to other stressors. eIF2B is a major housekeeping complex that governs the rate of global protein synthesis under normal and stress conditions.
View Article and Find Full Text PDFBackground: Mutations in eukaryotic translation initiation factor 2B (eIF2B) cause Childhood Ataxia with CNS Hypomyelination (CACH), also known as Vanishing White Matter disease (VWM), which is associated with a clinical pathology of brain myelin loss upon physiological stress. eIF2B is the guanine nucleotide exchange factor (GEF) of eIF2, which delivers the initiator tRNA(Met) to the ribosome. We recently reported that a R132H mutation in the catalytic subunit of this GEF, causing a 20% reduction in its activity, leads under normal conditions to delayed brain development in a mouse model for CACH/VWM.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are short non-coding RNAs that play a central role in regulation of gene expression by binding to target genes. Many miRNAs were associated with the function of the central nervous system (CNS) in health and disease. Astrocytes are the CNS most abundant glia cells, providing support by maintaining homeostasis and by regulating neuronal signaling, survival and synaptic plasticity.
View Article and Find Full Text PDFEukaryotic translation initiation factor 2B is a major housekeeping complex that governs the rate of global protein synthesis under normal and stress conditions. Mutations in any of its five subunits lead to leucoencephalopathy with vanishing white matter, an inherited chronic-progressive fatal brain disease with unknown aetiology, which is among the most prevalent childhood white matter disorders. We generated the first animal model for the disease by introducing a point mutation into the mouse Eif2b5 gene locus, leading to R132H replacement corresponding to the clinically significant human R136H mutation in the catalytic subunit.
View Article and Find Full Text PDF