Publications by authors named "Yuuki Uezato"

Protein kinases regulate almost all biological processes including cell proliferation, differentiation, apoptosis, and gene expression. Dysregulation of protein phosphorylation caused by abnormal activity and expression of protein kinases results in the onset of various diseases such as cancer and metabolic syndromes. The activities of a large number of protein kinases are regulated by phosphorylation.

View Article and Find Full Text PDF

D-Allose (D-All), a C-3 epimer of D-glucose (D-Glc), is a naturally rare monosaccharide, which shows anti-proliferative activity against several human cancer cell lines. Unlike conventional anticancer drugs, D-All targets glucose metabolism and is non-toxic to normal cells. Therefore, it has attracted attention as a unique "seed" compound for anticancer agents.

View Article and Find Full Text PDF

Protein kinases are known to be implicated in various biological phenomena and diseases through their involvement in protein phosphorylation. Therefore, analysis of the activity of protein kinases by examination of their phosphorylation state is important to elucidate their mechanisms. However, a method for analyzing the phosphorylation state of entire protein kinases in cells is not established.

View Article and Find Full Text PDF

To analyze a variety of protein phosphatases, we developed phosphorylated TandeMBP (P-TandeMBP), in which two different mouse myelin basic protein isoforms were fused in tandem, as a protein phosphatase substrate. P-TandeMBP was prepared efficiently in four steps: (1) phosphorylation of TandeMBP by a protein kinase mixture (Ca(2+)/calmodulin-dependent protein kinase Iδ, casein kinase 1δ, and extracellular signal-regulated kinase 2); (2) precipitation of both P-TandeMBP and protein kinases to remove ATP, Pi, and ADP; (3) acid extraction of P-TandeMBP with HCl to remove protein kinases; and (4) neutralization of the solution that contains P-TandeMBP with Tris. In combination with the malachite green assay, P-TandeMBP can be used to detect protein phosphatase activity without using radioactive materials.

View Article and Find Full Text PDF