We report an atomic momentum spectroscopy (AMS) experiment on HD, performed at a scattering angle of 135° and at an incident electron energy of 2.0 keV. The electron-atom Compton profiles due to the intramolecular motions of the H and D atoms in HD were obtained.
View Article and Find Full Text PDFWe report the asymptotic behavior of the electron-atom Compton profile due to the intramolecular H-atom motion in H. The experiment has been performed at a scattering angle of 135° and at incident electron energies from 1.0 to 2.
View Article and Find Full Text PDFThe title compound, 2-ethylhexyl-4-methoxycinnamate (2EH4MC), is known as a typical ingredient of sunscreen cosmetics that effectively converts the absorbed UV-B light to thermal energy. This energy conversion process includes the nonradiative decay (NRD): - isomerization and finally going back to the original structure with a release of thermal energy. In this study, we performed UV spectroscopy for jet-cooled 2EH4MC to investigate the electronic/geometrical structures as well as the NRD mechanism.
View Article and Find Full Text PDFThe electronic states and photochemistry including nonradiative decay (NRD) and trans(E) → cis(Z) isomerization of methylcinnamate (MC) and its hydrogen-bonded complex with methanol have been investigated under jet-cooled conditions. S1(1nπ*) and S2(1ππ*) are directly observed in MC. This is the first direct observation of S1(1nπ*) in cinnamate derivatives.
View Article and Find Full Text PDFAn experimental and theoretical study has been carried out to elucidate the nonradiative decay (NRD) and trans(E) → cis(Z) isomerization from the S1 (1ππ*) state of structural isomers of hydroxy methylcinnamate (HMC); ortho-, meta- and para-HMC (o-, m- and p-HMC). A low temperature matrix-isolation Fourier Transform Infrared (FTIR) spectroscopic study revealed that all the HMCs are cis-isomerized upon UV irradiation. A variety of laser spectroscopic methods have been utilized for jet-cooled gas phase molecules to investigate the vibronic structure and lifetimes of the S1 state, and to detect the transient state appearing in the NRD process.
View Article and Find Full Text PDFIon-imaging and dispersed fluorescence spectroscopy are employed for the photodissociation dynamics study of methylamine in the photolysis wavelength range 205-213 nm. The methyl radical product is found to populate a wide range of ro-vibrational states, among which the CH fragment generated in the v = 0 state shows a bimodal kinetic energy distribution. The internal energy analysis of the NH counterproduct indicates that a lower kinetic energy component, which was observed only with the CH(v=0) fragment, energetically matches the electronically excited ÃA state.
View Article and Find Full Text PDFThe nonradiative decay pathways of jet-cooled para-methoxy methylcinnamate (p-MMC) and para-methoxy ethylcinnamate (p-MEC) have been investigated by picosecond pump-probe and nanosecond UV-Deep UV pump-probe spectroscopy. The possible relaxation pathways were calculated by the (time-dependent) density functional theory. We found that p-MMC and p-MEC at low excess energy undergo multistep intersystem crossing (ISC) from the bright S (ππ*) state to the lowest triplet T (ππ*) state via two competing pathways through the T state in the time scale of 100 ps: (a) stepwise ISC followed after the internal conversion (IC) from S to the dark nπ* state; (b) direct ISC from the S to T states.
View Article and Find Full Text PDF