J Intensive Care
December 2014
Background: Acute respiratory distress syndrome (ARDS) is characterized by the increased pulmonary permeability secondary to diffuse alveolar inflammation and injuries of several origins. Especially, the distinction between a direct (pulmonary injury) and an indirect (extrapulmonary injury) lung injury etiology is gaining more attention as a means of better comprehending the pathophysiology of ARDS. However, there are few reports regarding the quantitative methods distinguishing the degree of pulmonary permeability between ARDS patients due to pulmonary injury and extrapulmonary injury.
View Article and Find Full Text PDFIntroduction: The Berlin definition divides acute respiratory distress syndrome (ARDS) into three severity categories. The relationship between these categories and pulmonary microvascular permeability as well as extravascular lung water content, which is the hallmark of lung pathophysiology, remains to be elucidated. The aim of this study was to evaluate the relationship between extravascular lung water, pulmonary vascular permeability, and the severity categories as defined by the Berlin definition, and to confirm the associated predictive validity for severity.
View Article and Find Full Text PDFBackground: In patients with severe sepsis, depression of cardiac performance is common and is often associated with left ventricular (LV) dilatation to maintain stroke volume. Although it is essential to optimize cardiac preload to maintain tissue perfusion in patients with severe sepsis, the optimal preload remains unknown. This study aimed to evaluate the reliability of global end-diastolic volume index (GEDI) as a parameter of cardiac preload in the early phase of severe sepsis.
View Article and Find Full Text PDF