Publications by authors named "Yuttana Chawengsub"

Arachidonic acid (AA) metabolites function as EDHFs in arteries of many species. They mediate cyclooxygenase (COX)- and nitric oxide (NO)-independent relaxations to acetylcholine (ACh). However, the role of AA metabolites as relaxing factors in mouse arteries remains incompletely defined.

View Article and Find Full Text PDF

Arachidonic acid (AA) is metabolized by endothelial 15-lipoxygenase (15-LO) to several vasodilatory eicosanoids such as 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA) and its proposed unstable precursor 15-hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-EETA). In the present study, the acid-stable 13-hydroxy-trans-14,15-epoxy-eicosatrienoic acid (13-H-14,15-EETA) was identified and its vascular activities characterized. Rabbit aorta, mesenteric arteries, and the combination of 15-LO and cytochrome P450 2J2 converted AA to two distinct HEETA metabolites.

View Article and Find Full Text PDF

Stimulation of vascular endothelial cells with agonists such as acetylcholine (ACh) or bradykinin or with shear stress activates phospholipases and releases arachidonic acid (AA). AA is metabolized by cyclooxygenases, cytochrome P-450s, and lipoxygenases (LOs) to vasoactive products. In some arteries, a substantial component of the vasodilator response is dependent on LO metabolites of AA.

View Article and Find Full Text PDF

15-Lipoxygenase (15-LO-1) metabolizes arachidonic acid (AA) to 11,12,15-trihydroxyeicosatrienoic acids (THETAs) and 15-hydroxy-11,12-epoxyeicosatrienoic acids (HEETA) that dilate rabbit arteries. Increased endothelial 15-LO-1 expression enhances arterial relaxations to agonists. We tested the effect of hypoxia on 15-LO-1 expression, THETA and HEETA synthesis, and relaxations in rabbit arteries.

View Article and Find Full Text PDF

The fragmentation characteristics of monohydroxyeicosatetraenoic acids and dihydroxy- and trihydroxyeicosatrienoic acids were investigated by electrospray ionization Fourier transform ion cyclotron resonance (FTICR) mass spectrometry using sustained off-resonance irradiation collision-induced dissociation (SORI-CID) and infrared multiphoton dissociation (IRMPD). The fragmentation patterns of these compounds were associated with the number and positions of the hydroxyl substituents. The fragmentation is more complicated with increasing number of the hydroxyl groups of the compounds.

View Article and Find Full Text PDF

Previous studies indicate that 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA), an endothelium-derived hyperpolarizing factor in the rabbit aorta, mediates a portion of the relaxation response to acetylcholine by sequential metabolism of arachidonic acid by 15-lipoxygenase, hydroperoxide isomerase, and epoxide hydrolase. To determine the stereochemical configuration of the endothelial 11,12,15-THETA, its activity and chromatographic migration were compared with activity and migration of eight chemically synthesized stereoisomers of 11,12,15(S)-THETA. Of the eight isomers, only 11(R),12(S),15(S)-trihydroxyeicosa-5(Z),8(Z),13(E)-trienoic acid comigrated with the biological 11,12,15-THETA on reverse- and normal-phase HPLC and gas chromatography.

View Article and Find Full Text PDF

Arachidonic acid (AA) causes endothelium-dependent smooth muscle hyperpolarizations and relaxations that are mediated by a 15-lipoxygenase-I (15-LO-I) metabolite, 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA). We propose that AA is metabolized sequentially by 15-LO-I and hydroperoxide isomerase to an unidentified hydroxyepoxyeicosatrienoic acid (HEETA), which is hydrolyzed by a soluble epoxide hydrolase (sEH) to 11,12,15-THETA. After incubation of aorta with 14C-labeled AA, metabolites were extracted and the HEETAs were resolved by performing HPLC.

View Article and Find Full Text PDF

ACh-induced endothelium-dependent relaxation in rabbit small mesenteric arteries is resistant to N-nitro-L-arginine (L-NA) and indomethacin but sensitive to high K+, indicating the relaxations are mediated by endothelium-derived hyperpolarizing factors (EDHFs). The identity of the EDHFs in this vascular bed remains undefined. Small mesenteric arteries pretreated with L-NA and indomethacin were contracted with phenylephrine.

View Article and Find Full Text PDF

We recently reported that the lipoxygenase product 11,12,15-trihydroxyeicosatrienoic acid (THETA) mediates arachidonic acid (AA)-induced relaxation in the rabbit aorta. This study was designed to determine whether this lipoxygenase metabolite is involved in relaxation responses to AA in rabbit small mesenteric arteries. AA (10(-9)-10(-4) M) produced potent relaxations in isolated phenylephrine-preconstricted arteries, with a maximal relaxation of 99 +/- 0.

View Article and Find Full Text PDF