Publications by authors named "Yuto Sugai"

This study aims to evaluate the dosimetric accuracy of a deep learning (DL)-based deliverable volumetric arc radiation therapy (VMAT) plan generated using DL-based automated planning assistant system (AIVOT, prototype version) for patients with prostate cancer. The VMAT data (cliDose) of 68 patients with prostate cancer treated with VMAT treatment (70-74 Gy/28-37 fr) at our hospital were used (n = 55 for training and n = 13 for testing). First, a HD-U-net-based 3D dose prediction model implemented in AIVOT was customized using the VMAT data.

View Article and Find Full Text PDF

Purpose: Deep learning-based virtual patient-specific quality assurance (QA) is a novel technique that enables patient QA without measurement. However, this method could be improved by further evaluating the optimal data to be used as input. Therefore, a deep learning-based model that uses multileaf collimator (MLC) information per control point and dose distribution in patient's CT as inputs was developed.

View Article and Find Full Text PDF

Purpose: We aimed to assess radiomics approaches for estimating three pulmonary function test (PFT) results (forced expiratory volume in one second [FEV1], forced vital capacity [FVC], and the ratio of FEV1 to FVC [FEV/FVC]) using data extracted from chest computed tomography (CT) images.

Methods: This retrospective study included 85 lung cancer patients (mean age, 75 years ±8; 69 men) who underwent stereotactic body radiotherapy between 2012 and 2020. Their pretreatment chest breath-hold CT and PFT data before radiotherapy were obtained.

View Article and Find Full Text PDF

The purpose of this study is to introduce differential dose−volume histogram (dDVH) features into machine learning for radiation pneumonitis (RP) prediction and to demonstrate the predictive performance of the developed model based on integrated cumulative dose−volume histogram (cDVH) and dDVH features. Materials and methods: cDVH and dDVH features were calculated for 153 patients treated for non-small-cell lung cancer with 60−66 Gy and dose bins ranging from 2 to 8 Gy in 2 Gy increments. RP prediction models were developed with the least absolute shrinkage and selection operator (LASSO) through fivefold cross-validation.

View Article and Find Full Text PDF

Early regression-the regression in tumor volume during the initial phase of radiotherapy (approximately 2 weeks after treatment initiation)-is a common occurrence during radiotherapy. This rapid radiation-induced tumor regression may alter target coordinates, necessitating adaptive radiotherapy (ART). We developed a deep learning-based radiomics (DLR) approach to predict early head and neck tumor regression and thereby facilitate ART.

View Article and Find Full Text PDF

Background: Radiomics is a new technology to noninvasively predict survival prognosis with quantitative features extracted from medical images. Most radiomics-based prognostic studies of non-small-cell lung cancer (NSCLC) patients have used mixed datasets of different subgroups. Therefore, we investigated the radiomics-based survival prediction of NSCLC patients by focusing on subgroups with identical characteristics.

View Article and Find Full Text PDF