Publications by authors named "Yuto Nagai"

We demonstrate that nanopores of activated carbon (AC) function as nanoreactors that oxidize perylene (PER) to a redox-active organic compound, 3,10-perylenedione (PERD), without any metal catalysts or organic solvents. PER is first adsorbed on AC in the gas phase, and the PER-adsorbed AC is subjected to electrochemical oxidation in aqueous HSO as the electrolyte. Because gas-phase adsorption is solvent-free, PER is completely adsorbed on AC as long as the amount of PER does not exceed the saturated adsorption capacity of the AC, which enables accurate control of the amount adsorbed.

View Article and Find Full Text PDF

A pyrene dimer (PYD) is synthesized by electrochemical oxidation homocoupling of pyrene (PY) inside the pores of MgO-templated mesoporous carbons without any metal catalysts or organic solvents. The resulting MgO-C/PYD hybrids can be used as high-performance aqueous electrochemical capacitor electrodes due to the reversible redox property of PYD and large contact area between the hybridized PYD and conductive carbon surfaces, which enable rapid charge transfer at the large contact interface. In our previous study, PY was considered to polymerize through electrochemical oxidation, and activated carbon with the pore sizes of ∼4 nm was used as a porous carbon substrate.

View Article and Find Full Text PDF

Norbornadiene (NBD) is adsorbed on activated carbon (AC), and the adsorbed NBD is polymerized within the pores of AC. Two kinds of ACs─AC-2 with only micropores of ∼2 nm and AC-4 with not only micropores but also mesopores below 4 nm─are examined to study the effects of the hybridized polynorbornadiene (PNBD) on the electric double-layer capacitor and hydrogen adsorption performance. Various measurements are performed to determine the form of the hybridized PNBD inside the pores of AC.

View Article and Find Full Text PDF