Alexander disease (AxD) is an intractable neurodegenerative disease caused by mutations in (), which is predominantly expressed in astrocytes. Thus, AxD is a primary astrocyte disease. However, it remains unclear how mutations affect astrocytes and cause AxD pathology.
View Article and Find Full Text PDFPeripheral infection induces inflammation in peripheral tissues and the brain, impacting brain function. Glial cells are key players in this process. However, the effects of peripheral infection on glial activation and brain function remain unknown.
View Article and Find Full Text PDFAlexander disease (AxD) is an intractable neurodegenerative disorder caused by GFAP mutations. It is a primary astrocyte disease with a pathological hallmark of Rosenthal fibres within astrocytes. AxD astrocytes show several abnormal phenotypes.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2022
Purpose: Because the importance of glia in regulating brain functions has been demonstrated, genetic technologies that manipulate glial cell-specific gene expression in the brain have become essential and have made great progress. However, it is unknown whether the same strategy that is used in the brain can be applied to the retina because retinal glia differs from glia in the brain. Here, we aimed to find a method for selective gene expression in Müller cells (characteristic glial cells in the retina) and identified Mlc1 as a specific promoter of Müller cells.
View Article and Find Full Text PDF