Over the past decade, significant research efforts have focused on osmapentalyne, characterized by the more reactive Os≡C7 (Carbon atoms numbered in a clockwise direction on the osmapentalyne skeleton), across areas encompassing electrophilic, nucleophilic, and addition reactions. Nevertheless, the reactivity of osmapentalyne featuring Os≡C1 remains ripe for further exploration. In this investigation, we effectively synthesized a lineage of osmapentalenofurans through the nucleophilic reaction of osmapentalyne incorporating Os≡C1 with phenols.
View Article and Find Full Text PDFSingle-molecule localization microscopy (SMLM) has revolutionized our ability to visualize cellular structures, offering unprecedented detail. However, the intricate biophysical principles that underlie SMLM can be daunting for newcomers, particularly undergraduate and graduate students. To address this challenge, we introduce the fundamental concepts of SMLM, providing a solid theoretical foundation.
View Article and Find Full Text PDFThe introduction of super-resolution microscopy (SRM) has significantly advanced our understanding of cellular and molecular dynamics, offering a detailed view previously beyond our reach. Implementing SRM in biophysical research, however, presents numerous challenges. This review addresses the crucial aspects of utilizing SRM effectively, from selecting appropriate fluorophores and preparing samples to analyzing complex data sets.
View Article and Find Full Text PDFThe fluorescent probe method has attracted significant research attention due to its high sensitivity and reproducibility in detecting bovine serum albumin (BSA). In this study, we constructed a fluorescent probe for BSA detection by assembling an amphiphilic organic fluorescent molecule, termed 2-(2'-hydroxyphenyl) benzothiazole (HBT-11), with BSA. In an aqueous solution, HBT-11 exhibited a weak fluorescence emission at 501 nm.
View Article and Find Full Text PDFTransplantation of brown adipose tissue (BAT) is a promising approach for treating obesity and metabolic disorders. However, obtaining sufficient amounts of functional BAT or brown adipocytes for transplantation remains a major challenge. In this study, we developed a hydrogel that combining adipose acellular matrix (AAM) and GelMA and HAMA that can be adjusted for stiffness by modulating the duration of light-crosslinking.
View Article and Find Full Text PDFThe induction of thermogenesis in brown adipose tissue is emerging as an attractive therapy for obesity and metabolic syndrome. However, the long-term efficacy and safety of clinical pharmaceutical agents have yet to be fully characterized. The transplantation of brown adipose tissue represents an alternative approach that might have a therapeutic effect by inducing a long-term increase in energy expenditure.
View Article and Find Full Text PDFParticulate matter (PM) toxicity has mostly been investigated through in vitro exposure or tracheal infusion in animal models. However, given the complexity of ambient conditions, most animal studies do not mimic real-life PM exposure. In this work, we established a novel integrated exposure model to study the dynamic inflammatory response and defense strategies in ambient PM-exposed mice.
View Article and Find Full Text PDFOrganophosphate esters (OPEs) are widespread in water bodies and have attracted public attention due to their hazards. This study investigated the presence of OPEs in surface water of Taihu Lake from 2012 and 2021-2022. The OPEs concentration was compared ten years ago and ten years later.
View Article and Find Full Text PDFModeling-based prediction methods enable rapid, reagent-free air pollution detection based on inexpensive multi-source data than traditional chemical reaction-based detection methods in order to quickly understand the air pollution situation. In this study, a convolutional neural network (CNN) and long and short-term memory (LSTM) neural networks are integrated to create a CNN-LSTM time series prediction model to predict the concentration of PM and its chemical components (i.e.
View Article and Find Full Text PDFThe aim of this study was to evaluate the efficacy and safety of the Chinese herbal formula San-Huang Gu-Ben Zhi-Ke (SHGBZK) as a treatment for patients with stable chronic obstructive pulmonary disease (COPD) diagnosed with lung-spleen Qi deficiency. A randomized, double-blind, placebo-controlled trial was designed. 98 adults aged between 40 and 80 years with stable COPD diagnosed with lung-spleen Qi deficiency were included.
View Article and Find Full Text PDFLocalized scleroderma is a complex autoimmune disease characterized by dermal fibrosis and loss of cutaneous fat. While cytotherapy offers a promising treatment option, stem cell transplantation results in low survival rates and fails in target cell differentiation. In this study, we aimed to prefabricate syngeneic adipose organoids (ad-organoids) using microvascular fragments (MVFs) via three-dimensional (3D) culturing and transplant them beneath the fibrotic skin to restore subcutaneous fat and reverse the pathological manifestation of localized scleroderma.
View Article and Find Full Text PDFAging is associated with loss of skeletal muscle regeneration. Differentially regulated vascular endothelial growth factor (VEGF)A with aging may partially underlies this loss of regenerative capacity. To assess the role of VEGFA in muscle regeneration, young (12-14 weeks old) and old C57BL/6 mice (24,25 months old) are subjected to cryoinjury in the tibialis anterior (TA) muscle to induce muscle regeneration.
View Article and Find Full Text PDFRecent studies have uncovered the therapeutic potential of elesclomol (ES), a copper-ionophore, for copper deficiency disorders. However, we currently do not understand the mechanism by which copper brought into cells as ES-Cu(II) is released and delivered to cuproenzymes present in different subcellular compartments. Here, we have utilized a combination of genetic, biochemical, and cell-biological approaches to demonstrate that intracellular release of copper from ES occurs inside and outside of mitochondria.
View Article and Find Full Text PDFWe report on the fabrication, characterization, and microthermometry application of high-quality, nanometric thin films, with thicknesses in the range 20-200 nm, of the molecular spin-crossover complex [Fe(HB(1,2,3-triazol-1-yl))]. The films were obtained by vacuum thermal evaporation and characterized by X-ray diffraction, UV spectrophotometry, and atomic force microscopy. The as-deposited films are dense and crystalline with a preferred [011] orientation of the monoclinic crystal lattice normal to the substrate surface.
View Article and Find Full Text PDFExcess intracellular Cu perturbs cellular redox balance and thus causes diseases. However, the relationship between cellular redox status and Cu homeostasis and how such an interplay is coordinated within cellular compartments has not yet been well established. Using combined approaches of organelle-specific redox sensor Grx1-roGFP2 and non-targeted proteomics, we investigate the real-time Cu-dependent antioxidant defenses of mitochondria and cytosol in live HEK293 cells.
View Article and Find Full Text PDFAutologous fat grafting has been a widely used technique; however, the role of adipose-derived stem cells (ASCs), extracellular matrix (ECM), and microenvironment in fat regeneration are not fully understood. Lipoaspirates were obtained and processed by inter-syringe shifting to remove adipocytes, yielding an adipocyte-free fat (Aff). Aff was then exposed to lethal dose of radiation to obtain decellularized fat (Df).
View Article and Find Full Text PDFAcute and chronic wounds affect millions of people around the world, imposing a growing financial burden on patients and hospitals. Despite the application of current wound management strategies, the physiological healing process is disrupted in many cases, resulting in impaired wound healing. Therefore, more efficient and easy-to-use treatment modalities are needed.
View Article and Find Full Text PDFExercise is believed to be beneficial for skeletal muscle functions across all ages. Regimented exercise is often prescribed as an effective treatment/prophylaxis for age-related loss of muscle mass and function, known as sarcopenia, and plays an important role in the maintenance of mobility and functional independence in the elderly. However, response to exercise declines with aging, resulting in limited gain of muscle strength and endurance.
View Article and Find Full Text PDFA major impediment preventing normal wound healing is insufficient vascularization, which causes hypoxia, poor metabolic support, and dysregulated physiological responses to injury. To combat this, the delivery of angiogenic factors, such as vascular endothelial growth factor (VEGF), has been shown to provide modest improvement in wound healing. Here, the importance of specialty delivery systems is explored in controlling wound bed drug distribution and consequently improving healing rate and quality.
View Article and Find Full Text PDFThe ability of skeletal muscle to regenerate declines significantly with aging. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT), a critical component of the hypoxia signaling pathway, was less abundant in skeletal muscle of old (23-25 months old) mice. This loss of ARNT was associated with decreased levels of Notch1 intracellular domain (N1ICD) and impaired regenerative response to injury in comparison to young (2-3 months old) mice.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2020
Systematic design and self-assembly of metal-organic polyhedra with predictable configurations has been a long-standing challenge in crystal engineering. Herein a concave polyoxovanadate cluster, [V O (OCH ) (SO ) ] , which can be generated in situ under specific reaction conditions, is reported. Based on this cluster, a potential trivalent molecular building block, [V O (OCH ) (SO )(CO ) ] , can be obtained by the bridging-ligand-substitution strategy and it possesses appropriate angle information for the design of molecular cubes.
View Article and Find Full Text PDFThe ability to extract kinetic interaction parameters from single-molecule fluorescence resonance energy transfer trajectories without the need for solving complex single-molecule differential equations has the potential to address some of the critical biophysical questions. Here, we provide a noise-free single-molecule interaction simulation (SMIS) tool to give the expected dwell-time distributions and relative populations of each FRET level based on the assigned kinetic model and to dissect kinetic interaction parameters from single-molecule FRET trajectories. The method provides the expected dwell-time distributions, average transition rates, and relative populations of each FRET level based on the assigned kinetic model.
View Article and Find Full Text PDFTemperature measurement at the nanoscale is of paramount importance in the fields of nanoscience and nanotechnology, and calls for the development of versatile, high-resolution thermometry techniques. Here, the working principle and quantitative performance of a cost-effective nanothermometer are experimentally demonstrated, using a molecular spin-crossover thin film as a surface temperature sensor, probed optically. We evidence highly reliable thermometric performance (diffraction-limited sub-µm spatial, µs temporal and 1 °C thermal resolution), which stems to a large extent from the unprecedented quality of the vacuum-deposited thin films of the molecular complex [Fe(HB(1,2,4-triazol-1-yl))] used in this work, in terms of fabrication and switching endurance (>10 thermal cycles in ambient air).
View Article and Find Full Text PDF