The adenosine A receptor antagonist/inverse agonist, KW-6356 has been shown to be effective in Parkinson's disease (PD) patients as monotherapy and as an adjunct therapy to L-3,4-dihydroxyphenylalanine (L-DOPA)/decarboxylase inhibitor. However, the effects of KW-6356 combined with L-DOPA on anti-parkinsonian activity and established dyskinesia has not been investigated in preclinical experiments. We examined the effects of combination of KW-6356 with L-DOPA in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets.
View Article and Find Full Text PDFKW-6356 is a novel adenosine A receptor antagonist/inverse agonist that not only blocks binding of adenosine to adenosine A receptor but also inhibits the constitutive activity of adenosine A receptor. The efficacy of KW-6356 as both monotherapy and an adjunct therapy to L-3,4-dihydroxyphenylalanine (L-DOPA)/decarboxylase inhibitor in Parkinson's disease (PD) patients has been reported. However, the first-generation A antagonist istradefylline, which is approved for use as an adjunct treatment to L-DOPA/decarboxylase inhibitor in adult PD patients experiencing OFF episodes, has not shown statistically significant efficacy as monotherapy.
View Article and Find Full Text PDFKW-6356 is a novel adenosine A (A) receptor antagonist/inverse agonist, and its efficacy as monotherapy in Parkinson's disease (PD) patients has been reported. Istradefylline is a first-generation A receptor antagonist approved for use as adjunct treatment to levodopa/decarboxylase inhibitor in adult PD patients experiencing "OFF" episodes. In this study, we investigated the in vitro pharmacological profile of KW-6356 as an A receptor antagonist/inverse agonist and the mode of antagonism and compared them with istradefylline.
View Article and Find Full Text PDFWe have developed two syntheses of vicenistatin and its analogues. Our first-generation strategy included the rapid and sequential assembly of the macrocyclic lactam by using an intermolecular Horner-Wadsworth-Emmons reaction between the C3-C13 fragment and the C1-C2, C14-C19 fragment, followed by an intramolecular Stille coupling reaction. The second-generation strategy utilized a ring-closing metathesis of a hexaene intermediate to generate the desired 20-membered macrolactam.
View Article and Find Full Text PDF