In this study, a photothermal therapy agent that works efficiently in the second biological transparency window was developed based on the localized surface plasmon (LSP) resonance of symmetry-broken open-shell nanostructures of low-cost Cu (CuOSNs). The strong LSP resonance and superior photothermal conversion ability in the second biological transparency window were achieved by generating the dipolar bonding mode due to the plasmon hybridization between the nanoshell dipole and the nanohole dipole at the opening edge in CuOSNs derived from the symmetry breaking of a Cu nanoshell. Oxidative dissolution of CuOSNs in water was significantly suppressed by successive coating with the self-assembled monolayer of 16-mercaptohexadecanoic acid and a thin silica layer.
View Article and Find Full Text PDFThis study proposes a methodology for the fabrication of two-dimensional assembled colloidal nanocrystals based on the classical theory for the surface excess of a short-chain alcohol (butanol) in an aqueous mixture and Rayleigh-Bénard-Marangoni convection caused by temperature and/or surface tension gradients due to the volatilization of butanol at the air-water interface. When polyvinylpyrrolidone (PVP)-modified anisotropic silver nanoprisms dispersed in butanol were added into the water phase, the nanoprisms were guided to the air-water interface adsorbed butanol together with free butanol and formed dense two-dimensional assemblies through the lateral attraction between nanoprisms as the adsorbed butanol was volatilized. The obtained dense film composed of silver nanoprisms exhibited surface-enhanced Raman scattering (SERS) activity, and in particular, the activity was largely enhanced by low-pressure plasma treatment.
View Article and Find Full Text PDFAlthough plasmonic palladium (Pd) nanospheres are thermodynamically stable and have high photothermal conversion due to the free and bound electron coupling associated with the intrinsic high interband transition, they have not attracted attention as a photothermal conversion material for next-generation photothermal cancer therapy. This is because the Pd nanospheres generate the localized surface plasmon resonance (LSPR) intrinsically in the ultraviolet region, which is far away from the biological transparent window (750-900 nm). In this study, we controlled the LSP wavelength of Pd nanospheres by coating with high refractive index TiO shells taking advantage of the Pd LSPR which is highly sensitive to changes in the local refractive index around the nanospheres.
View Article and Find Full Text PDFAbsorption enhancement based on interaction between the localized surface plasmon (LSP) and molecular exciton is one of the most important phenomena for the development of high-performance solar devices. In this study, hybrids of plasmonic metal nanoparticles and dye molecules have been developed, which exhibit enhanced absorption at precisely tuned wavelengths in a visible region. The hybrids consist of a porphyrin derivative, which has four absorption peaks (Q-bands) in a range of 500-700 nm, and triangular silver nanoprisms (AgPRs), which are developed by us to exhibit precisely tuned LSP resonance wavelengths.
View Article and Find Full Text PDFWe have succeeded in significantly enhancing fluorescence from intrinsically phosphorescent palladium octaethylporphyrin (Pd-porphyrin) that has an intersystem crossing efficiency of ∼1 by using silver nanoprisms (AgPRs). This was achieved by controlling the wavelength of the localized surface plasmon (LSP) resonance of AgPRs and the distance between the Pd-porphyrin molecules and the AgPR surfaces. In addition to enhancing phosphorescence by spectrally overlapping the phosphorescence band with the LSP resonance band, tuning the LSP wavelength to approximately 520 nm led to the appearance of a new emission band around the wavelength corresponding to the fluorescent radiation.
View Article and Find Full Text PDF