Publications by authors named "Yutao Pei"

Magnetically actuated soft microrobots hold promise for biomedical applications that necessitate precise control and adaptability in complex environments. These microrobots can be accurately steered below their step-out frequencies where they exhibit synchronized motion with external magnetic fields. However, the step-out frequencies of soft microrobots have not been investigated yet, as opposed to their rigid counterparts.

View Article and Find Full Text PDF
Article Synopsis
  • - Hydrogen is a strong alternative fuel with benefits like high energy density and low environmental impact, but its storage for cars is challenging.
  • - A new method using a layered structure made of reduced graphene oxide and organosilica can host tiny MgH nanoparticles, improving their hydrogen storage capabilities compared to bulk MgH.
  • - The study shows that this approach allows hydrogen to be released at lower temperatures and maintains stable performance over multiple cycles, suggesting that this method can enhance both hydrogen release and recharging efficiency.
View Article and Find Full Text PDF

Despite the bright fortune of lithium-sulfur (Li-S) batteries as one of the next-generation energy storage systems owing to the ultrahigh theoretical energy density and earth-abundance of sulfur, crucial challenges including polysulfide shuttling and low sulfur content of sulfur cathodes need to be overcome before the commercial survival of sulfur cathodes. Herein, cobalt/carbon spheres embedded CNTs (Co-C-CNTs) are rationally designed as multifunctional hosts to synergistically address the drawbacks of sulfur cathodes. The host is synthesized by a facile pyrolysis using Co(OH) template and followed with the controllable etching process.

View Article and Find Full Text PDF

The long-term durability of triboelectric nanogenerators (TENGs) remains a main challenge for practical applications because of inevitable material abrasion and wear, especially for sliding TENGs. Herein, an inorganic triboelectric pair composed of diamond-like carbon (DLC) and glass with excellent durability and triboelectric output for sliding-mode TENGs is proposed. This triboelectric pair possesses a low coefficient of friction and little abrasion and accordingly excellent durability (>500 000 cycles).

View Article and Find Full Text PDF

Tailoring porous host materials, as an effective strategy for storing sulfur and restraining the shuttling of soluble polysulfides in electrolyte, is crucial in the design of high-performance lithium-sulfur (Li-S) batteries. However, for the widely studied conductive hosts such as mesoporous carbon, how the aspect ratio affects the confining ability to polysulfides, ion diffusion as well as the performances of Li-S batteries has been rarely studied. Herein, ordered mesoporous carbon (OMC) is chosen as a proof-of-concept prototype of sulfur host, and its aspect ratio is tuned from over ∼ 2 down to below ∼ 1.

View Article and Find Full Text PDF

Flexible piezocapacitive sensors utilizing nanomaterial-polymer composite-based nanofibrous membranes offer an attractive alternative to more traditional piezoelectric and piezoresistive wearable sensors owing to their ultralow powered nature, fast response, low hysteresis, and insensitivity to temperature change. In this work, we propose a facile method of fabricating electrospun graphene-dispersed PVAc nanofibrous membrane-based piezocapacitive sensors for applications in IoT-enabled wearables and human physiological function monitoring. A series of electrical and material characterization experiments were conducted on both the pristine and graphene-dispersed PVAc nanofibers to understand the effect of graphene addition on nanofiber morphology, dielectric response, and pressure sensing performance.

View Article and Find Full Text PDF

Elastomer-based wearables can improve people's lives; however, frictional wear caused by manipulation may pose significant concerns regarding their durability and sustainability. To address the aforementioned issue, a new class of advanced scalable supersoft elastic transparent material (ASSETm) is reported, which offers a unique combination of scalability (20 g scale), stretchability (up to 235%), and enzymatic degradability (up to 65% in 30 days). The key feature of our design is to render native dextrin hydrophobic, which turns it into a macroinitiator for bulk ring-opening polymerization.

View Article and Find Full Text PDF

Wind energy harvesting and sensing have a huge prospect in constructing self-powered sensor nodes, but the energy transducing efficiency at low and ultra-low wind speeds is still limited. Herein, we proposed a Kármán vortex street driven membrane triboelectric nanogenerator (KVSM-TENG) for ultra-low speed wind energy harvesting and flow sensing. By introducing Kármán vortex in the KVSM-TENG, the cut-in wind speed of the KVSM-TENG decreased from 1 to 0.

View Article and Find Full Text PDF
Article Synopsis
  • * The coating exhibits self-adaptive behavior, meaning it retains its lubricating properties after heating and then cooling back to room temperature, as shown by tribological tests.
  • * High-resolution imaging reveals that the coating's ultralubricity is due to the dynamic formation of WS nanoplatelets through atomic rearrangement, with the performance decreasing beyond 500 °C due to sulfur loss rather than oxidation.
View Article and Find Full Text PDF

Recent advances in 3D printing technology have enabled unprecedented design freedom across an ever-expanding portfolio of materials. However, direct 3D printing of soft polymeric materials such as polydimethylsiloxane (PDMS) is challenging, especially for structural complexities such as high-aspect ratio (>20) structures, 3D microfluidic channels (∼150 μm diameter), and biomimetic microstructures. This work presents a novel processing method entailing 3D printing of a thin-walled sacrificial metallic mold, soft polymer casting, and acidic etching of the mold.

View Article and Find Full Text PDF

The growing demand for flexible, ultrasensitive, squeezable, skin-mountable, and wearable sensors tailored to the requirements of personalized health-care monitoring has fueled the necessity to explore novel nanomaterial-polymer composite-based sensors. Herein, we report a sensitive, 3D squeezable graphene-polydimethylsiloxane (PDMS) foam-based piezoresistive sensor realized by infusing multilayered graphene nanoparticles into a sugar-scaffolded porous PDMS foam structure. Static and dynamic compressive strain testing of the resulting piezoresistive foam sensors revealed two linear response regions with an average gauge factor of 2.

View Article and Find Full Text PDF

Sensor designs found in nature are optimal due to their evolution over millions of years, making them well-suited for sensing applications. However, replicating these complex, three-dimensional (3D), biomimetic designs in artificial and flexible sensors using conventional techniques such as lithography is challenging. In this paper, we introduce a new processing paradigm for the simplified fabrication of flexible sensors featuring complex and bioinspired structures.

View Article and Find Full Text PDF

Polydimethylsiloxane (PDMS) is a silicone elastomer-based material that is used in various applications, including coatings, tubing, microfluidics, and medical implants. PDMS has been modified with hydrogel coatings to prevent fouling, which can be done through UV-mediated free radical polymerization using benzophenone. However, to the best of our knowledge, the properties of hydrogel coatings and their influence on the bulk properties of PDMS under various preparation conditions, such as the type and concentration of monomers, and UV treatment time, have never been investigated.

View Article and Find Full Text PDF

This paper reports a versatile template-free method based on the hydrogen reduction of metallic salts for the synthesis of nanoporous Ni and alloys. The approach involves thermal decomposition and reduction of metallic precursors followed with metal cluster nucleation and ligament growth. Topological disordered porous architectures of metals with a controllable distribution of pore size and ligament size ranging from tens of nanometers to micrometers are synthesized.

View Article and Find Full Text PDF

Cu-mediated living radical polymerization (Cu-mediated LRP) was employed in this research for the synthesis of starch-g-polyacrylamide (St-g-PAM). The use of a controlled radical grafting technique is necessary, as compared to the traditional free-radical polymerization methods, in order to obtain a well-defined structure of the final product. This is in turn essential for studying the relationship between such structure and the end-properties.

View Article and Find Full Text PDF

This paper investigates the mechanics of hybrid shape memory polymer polystrene (PS) based nanocomposites with skeletal structures of CNFs/MWCNTs formed inside. Experimental results showed an increase of glass transition temperature (Tg) with CNF/MWCNT concentrations instead of a decrease of Tg in nanocomposites filled by spherical particles, and an increase in mechanical properties on both macro- and μm-scales. Compared with CNFs, MWCNTs showed a better mechanical enhancement for PS nanocomposites due to their uniform distribution in the nanocomposites.

View Article and Find Full Text PDF

A versatile method to fabricate taper-free micro-/nanopillars of large aspect ratio was developed with focused ion beam (FIB) cutting. The key features of the fabrication are a FIB with an incident angle of 90° to the long axis of the pillar that enables milling of the pillar sideways avoiding tapering and the FIB current can be reduced step by step so as to reduce possible radiation damage of the milled surface by Ga ions. A procedure to accurately determine the cross-section of each pillar was developed.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session4vd11csb97jvpbg34escr6fpn6pigg2t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once