Publications by authors named "Yutaka Satou"

Ascidian larval muscle cells present a classic example of autonomous development. A regulatory mechanism for these cells has been extensively investigated, and the regulatory gene circuit has been documented from maternal factors to a muscle-specific gene. In the present study, we comprehensively identified genes expressed specifically in ascidian muscle cells, and found that all of them are under control of a positive regulatory loop of Tbx6-r.

View Article and Find Full Text PDF

Neural-crest cells and neuromesodermal progenitors (NMPs) are multipotent cells that are important for development of vertebrate embryos. In embryos of ascidians, which are the closest invertebrate relatives of vertebrates, several cells located at the border between the neural plate and the epidermal region have neural-crest-like properties; hence, the last common ancestor of ascidians and vertebrates may have had ancestral cells similar to neural-crest cells. However, these ascidian neural-crest-like cells do not produce cells that are commonly of mesodermal origin.

View Article and Find Full Text PDF

How gene regulatory networks (GRNs) encode gene expression dynamics and how GRNs evolve are not well understood, although these problems have been studied extensively. We created a digital twin that accurately reproduces expression dynamics of 13 genes that initiate expression in 32-cell ascidian embryos. We first showed that gene expression patterns can be manipulated according to predictions by this digital model.

View Article and Find Full Text PDF
Article Synopsis
  • Cranial neurogenic placodes were long thought to be unique to vertebrates, but recent findings suggest that ascidian embryos have similar structures, indicating a common ancestor.
  • BMP signaling plays a crucial role in defining the anterior neural plate border (ANB) region in ascidians, involving a BMP family member called Admp and its antagonists Noggin and Chordin.
  • Disruption of BMP signaling affects gene expression related to the development of adhesive organs in ascidians, supporting the idea that ANB cells are evolutionarily linked to vertebrate neurogenic placodes.
View Article and Find Full Text PDF

In animal development, most cell types stop dividing before terminal differentiation; thus, cell cycle control is tightly linked to cell differentiation programmes. In ascidian embryos, cell lineages do not vary among individuals, and rounds of the cell cycle are determined according to cell lineages. Notochord and muscle cells stop dividing after eight or nine rounds of cell division depending on their lineages.

View Article and Find Full Text PDF

Blood cells are thought to have emerged as phagocytes in the common ancestor of animals followed by the appearance of novel blood cell lineages such as thrombocytes, erythrocytes, and lymphocytes, during evolution. However, this speculation is not based on genetic evidence and it is still possible to argue that phagocytes in different species have different origins. It also remains to be clarified how the initial blood cells evolved; whether ancient animals have solely developed de novo programs for phagocytes or they have inherited a key program from ancestral unicellular organisms.

View Article and Find Full Text PDF

Gene/transcript model sets predicted from decoded genome sequences are an important resource for a wide range of biological studies. Accuracy of gene models is therefore critical for deducing accurate conclusions. Computationally predicted models are sometimes inconsistent with experimental data from cDNA clones and RNA-sequencing.

View Article and Find Full Text PDF

Protein kinases (PKs) and protein phosphatases (PPs) regulate the phosphorylation of proteins that are involved in a variety of biological processes. To study such biological processes systematically, it is important to know the whole repertoire of PKs and PPs encoded in a genome. In the present study, we surveyed the genome of an ascidian (Ciona robusta or Ciona intestinalis type A) to comprehensively identify the genes that encoded PKs and PPs.

View Article and Find Full Text PDF

The ascidian larval tail contains muscle cells for swimming. Most of these muscle cells differentiate autonomously. The genetic program behind this autonomy has been studied extensively and the genetic cascade from maternal factors to initiation of expression of a muscle structural gene, Myl.

View Article and Find Full Text PDF

Precise control of lineage segregation is critical for the development of multicellular organisms, but our quantitative understanding of how variable signaling inputs are integrated to activate lineage-specific gene programs remains limited. Here, we show how precisely two out of eight ectoderm cells adopt neural fates in response to ephrin and FGF signals during ascidian neural induction. In each ectoderm cell, FGF signals activate ERK to a level that mirrors its cell contact surface with FGF-expressing mesendoderm cells.

View Article and Find Full Text PDF

In animal embryos, gene regulatory networks control the dynamics of gene expression in cells and coordinate such dynamics among cells. In ascidian embryos, gene expression dynamics have been dissected at the single-cell resolution. Here, we revealed mathematical functions that represent the regulatory logics of all regulatory genes expressed at the 32-cell stage when the germ layers are largely specified.

View Article and Find Full Text PDF

Zic-r.a, a maternal transcription factor, specifies posterior fate in ascidian embryos. However, its direct target, Tbx6-r.

View Article and Find Full Text PDF

Chromosomal rearrangements can reduce fitness of heterozygotes and can thereby prevent gene flow. Therefore, such rearrangements can play a role in local adaptation and speciation. In particular, inversions are considered to be a major potential cause for chromosomal speciation.

View Article and Find Full Text PDF

In early embryos of Ciona, an invertebrate chordate, the animal-vegetal axis is established by the combinatorial actions of maternal factors. One target of these maternal factors, Foxd, is specifically expressed in the vegetal hemisphere and stabilizes the animal-vegetal axis by activating vegetal hemisphere-specific genes and repressing animal hemisphere-specific genes. This dual functionality is essential for the embryogenesis of early ascidian embryos; however, the mechanism by which Foxd can act as both a repressor and an activator is unknown.

View Article and Find Full Text PDF

Linkage logic theory provides a mathematical criterion to control network dynamics by manipulating activities of a subset of network nodes, which are collectively called a feedback vertex set (FVS). Because many biological functions emerge from dynamics of biological networks, this theory provides a promising tool for controlling biological functions. By manipulating the activity of FVS molecules identified in a gene regulatory network (GRN) for fate specification of seven tissues in ascidian embryos, we previously succeeded in reproducing six of the seven cell types.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates gene expression during the development of the tunicate embryo from fertilization to gastrulation using single-cell RNA sequencing.
  • Researchers identified 47 distinct cell types and observed how cell fates change when fibroblast growth factor (FGF) is inhibited.
  • The findings suggest that tunicate cell types have similarities to certain mouse embryonic cell types, highlighting conserved transcription factor expression during early development.
View Article and Find Full Text PDF

Ascidian embryos are used as a model system in developmental biology due to their unique properties, including their invariant cell division patterns, being comprised of a small number of cells and tissues, the feasibility of their experimental manipulation, and their simple and compact genome. These properties have provided an opportunity for examining the gene regulatory network at the single cell resolution and at a genome-wide scale. This article summarizes when and where each regulatory gene is expressed in early ascidian embryos, and the extent to which the gene regulatory network explains each gene expression.

View Article and Find Full Text PDF

The ascidian belongs to the sister group of vertebrates and shares many features with them. The gene regulatory network (GRN) controlling gene expression in ascidian embryonic development leading to the tadpole larva has revealed evolutionarily conserved gene circuits between ascidians and vertebrates. These conserved mechanisms are indeed useful to infer the original developmental programs of the ancestral chordates.

View Article and Find Full Text PDF
Article Synopsis
  • Ascidian embryos start zygotic transcription between the 8-cell and 16-cell stages, with the Gata.a transcription factor activating genes in the animal hemisphere and being countered by β-catenin/Tcf7 in the vegetal hemisphere.
  • Research shows genes expressed at the 16-cell stage have more Gata motifs in their upstream areas, suggesting Gata.a influences both animal and vegetal hemisphere gene expression.
  • Knockdown and reporter assays confirm that Gata.a is essential for activating these genes, indicating its broader role in early zygotic transcription beyond just specific hemispheric expression.
View Article and Find Full Text PDF

Foxg constitutes a regulatory loop with Fgf8 and plays an important role in the development of anterior placodes and the telencephalon in vertebrate embryos. Ascidians, which belong to Tunicata, the sister group of vertebrates, develop a primitive placode-like structure at the anterior boundary of the neural plate, but lack a clear counterpart of the telencephalon. In this animal, Foxg is expressed in larval palps, which are adhesive organs with sensory neurons.

View Article and Find Full Text PDF

Since its initial publication in 2002, the genome of Ciona intestinalis type A (Ciona robusta), the first genome sequence of an invertebrate chordate, has provided a valuable resource for a wide range of biological studies, including developmental biology, evolutionary biology, and neuroscience. The genome assembly was updated in 2008, and it included 68% of the sequence information in 14 pairs of chromosomes. However, a more contiguous genome is required for analyses of higher order genomic structure and of chromosomal evolution.

View Article and Find Full Text PDF

Transcription factors (TFs) control gene transcription, binding to specific DNA motifs located in cis-regulatory elements across the genome. The identification of TF-binding motifs is thus an important aspect to understand the role of TFs in gene regulation. SELEX, Systematic Evolution of Ligands by EXponential enrichment, is an efficient in vitro method, which can be used to determine the DNA-binding specificity of TFs.

View Article and Find Full Text PDF

Striated muscle cells in the tail of ascidian tadpole larvae differentiate cell-autonomously. Although several key regulatory factors have been identified, the genetic regulatory pathway is not fully understood; comprehensive understanding of the regulatory pathway is essential for accurate modeling in order to deduce principles for gene regulatory network dynamics, and for comparative analysis on how ascidians have evolved the cell-autonomous gene regulatory mechanism. Here, we reveal regulatory interactions among three key regulatory factors, Zic-r.

View Article and Find Full Text PDF

Network structures describing regulation between biomolecules have been determined in many biological systems. Dynamics of molecular activities based on such networks are considered to be the origin of many biological functions. Recently, it has been proved mathematically that key nodes for controlling dynamics in networks are identified from network structure alone.

View Article and Find Full Text PDF

The transcriptional repressor Snail is required for proper differentiation of the tail muscle of ascidian tadpole larvae. Two muscle lineages (B5.1 and B6.

View Article and Find Full Text PDF