Publications by authors named "Yutaka Sakaguchi"

This study aimed to investigate the nature of a specific body manipulation named Suichoku-Ririku (SR) in Japanese martial arts. SR is regarded as a method to change the way of stance and to distort the balance control of the opponent, but its nature and mechanism are unknown. In the present study, we attempted to determine the effect of SR in the cases that a person stood alone (Expt.

View Article and Find Full Text PDF

Sialorrhea, a common symptom of Parkinson's disease (PD), is related to reduced oromotor control and autonomic dysfunction. However, neuromuscular electrical stimulation (NMES) helps improve overall swallowing function. We performed NMES for eight weeks in an 84-year-old woman with stage 5 PD and severe sialorrhea.

View Article and Find Full Text PDF

To examine how individuals perceive synchrony between music and body motion, we investigated the characteristics of synchrony perception during observation of a Japanese Radio Calisthenics routine. We used the constant stimuli method to present video clips of an individual performing an exercise routine. We generated stimuli with a range of temporal shifts between the visual and auditory streams, and asked participants to make synchrony judgments.

View Article and Find Full Text PDF

When sight-reading music, pianists have to decode a large number of notes and immediately transform them into finger actions. How do they achieve such fast decoding? Pianists may use geometrical features contained in the musical score, such as the distance between notes, to improve their efficiency in reading them. The aim of this study is to investigate the visual information pianists rely on when reading music.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a highly prevalent, long-term neurodegenerative disorder that is sometimes treated by deep brain stimulation (DBS), which significantly reduces the need for dopaminergic drug therapy and improves quality of life. Such patients are cautioned, however, that dental instruments such as a dental turbine or ultrasonic scaler may adversely affect the functioning of such a system. Here, we report dental treatment for right maxillary tooth pain in a 65-year-old woman undergoing DBS for PD.

View Article and Find Full Text PDF

We report a case of buccal abscess caused by an impacted wisdom tooth in an extremely elderly person with malnutrition. The patient was a 94-year-old man, who complained that he had found it hard to open his mouth and that his cheek had been swollen for the previous 2 weeks. He had a shallow oral wound caused by an improperly fitting denture; however, the wound became infected.

View Article and Find Full Text PDF

Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J.

View Article and Find Full Text PDF

Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4-100 deg/s) along a straight path.

View Article and Find Full Text PDF

The critical fusion frequency (CFF) is a threshold that represents the temporal limits of the human visual system. If two flickering stimuli with equal subjective luminances are presented simultaneously at different locations, the CFF is the temporal frequency above which they cannot be distinguished. However, when the stimuli are presented sequentially at the same position, a transient twinkle can be perceived around the moment of the changeover.

View Article and Find Full Text PDF
Article Synopsis
  • The brain's ability to perform motor tasks in real-time is challenged by the slow sensorimotor system, and traditional models focus on feed-forward control, primarily for ballistic movements.
  • A new concept called "adaptive intermittent control" proposes that the brain splits continuous motor tasks into discrete time segments for better coordination and efficiency.
  • Computer simulations show this model improves visuo-manual tracking by anticipating future movements and uncertainties, replicating the common "motor intermittency" seen in human movements while reducing computational costs.
View Article and Find Full Text PDF

Although the phase shifts in ongoing oscillations seen in electroencephalograms (EEGs) and magnetoencephalograms are an important factor in discussions of phase dynamics, such as synchrony and reset, few studies have focused specifically on the phase shift. Here we investigate the relationship between phase shifts in alpha-frequency rhythms and reaction times during a visual simple reaction task by applying our previously described method (Naruse et al., 2013), which enables detection of phase shifts from a single EEG trial.

View Article and Find Full Text PDF

Human motor behavior often shows intermittent discontinuities even when people try to follow a continuously moving target. Although most previous studies revealed common characteristics of this "motor intermittency" using frequency analysis, this technique is not always appropriate because the nature of the intermittency is not stationary, i.e.

View Article and Find Full Text PDF

When one performs visuo-manual tracking tasks, velocity profile of hand movements shows discontinuous patterns even if the target moves smoothly. A crucial factor of this "intermittency" is considerable delay in the sensorimotor feedback loop, and several researchers have suggested that the cause is intermittent correction of motor commands. However, when and how the brain monitors task performance and updates motor commands in a continuous motor task is uncertain.

View Article and Find Full Text PDF

An important issue in motor learning/adaptation research is how the brain accepts the error information necessary for maintaining and improving task performance in a changing environment. The present study focuses on the effect of timing of error feedback. Previous research has demonstrated that adaptation to displacement of the visual field by prisms in a manual reaching task is significantly slowed by delayed visual feedback of the endpoint, suggesting that error feedback is most effective when given at the end of a movement.

View Article and Find Full Text PDF

We used mutual information analysis of neuronal activity in the macaque anterior intraparietal area (AIP) to examine information processing during a hand manipulation task. The task was to reach-to-grasp a three-dimensional (3D) object after presentation of a go signal. Mutual information was calculated between the spike counts of individual neurons in 50-ms-wide time bins and six unique shape classifications or 15 one-versus-one classifications of these shapes.

View Article and Find Full Text PDF

We propose a computational model of perceptual grouping for explaining the 3D shape representation of an illusory percept called "mime effect." This effect is associated with the generation of an illusory, volumetric perception that can be induced by particular distributions of inducing stimuli such as cones, whose orientations affect the stability of illusory perception. The authors have attempted to explain the characteristics of the shape representation of the mime effect using a neural network model that consists of four types of cells-encoding (E), normalizing (N), energetic (EN), and geometric (G) cells.

View Article and Find Full Text PDF

We developed a novel motoneuron model to examine the role of voltage-independent, Ca(2+)-activated potassium conductance (AHP conductance, or gAHP) in regulating repetitive firing. In addition to gAHP, the model also includes five voltage-gated conductances and a system that can reproduce Ca(2+) dynamics in the cytoplasm. Conductance kinetics were based on empirical data, and the model reproduced the piecewise linear, steady-state frequency-current relationship (f-I curve).

View Article and Find Full Text PDF

Two experiments were conducted to investigate how stimulus contrast affected the time required for perceptual filling-in. The stimuli consisted of a Gabor patch (target) and a circular grating region (surround). In Experiment 1, the target contrast was manipulated, and the surround contrast was fixed.

View Article and Find Full Text PDF

It has been proposed that the central nervous system determines reaching movement trajectories so as to minimize the positional variance of the endpoint in the presence of signal-dependent noise. The hypothesis well reproduces the empirical movement trajectories for noise to the control signal whose variance is proportional to the second power of the amplitude of the control signal. However, empirical studies do not necessarily exhibit such a simple signal-noise relationship.

View Article and Find Full Text PDF

This article proposes an adaptive action-selection method for a model-free reinforcement learning system, based on the concept of the 'reliability of internal prediction/estimation'. This concept is realized using an internal variable, called the Reliability Index (RI), which estimates the accuracy of the internal estimator. We define this index for a value function of a temporal difference learning system and substitute it for the temperature parameter of the Boltzmann action-selection rule.

View Article and Find Full Text PDF

Four experiments were performed to investigate how the time required for perceptual filling-in varies with the position of the target in the visual field. Conventional studies have revealed that filling-in is facilitated by a target with greater eccentricity, while no systematic studies have examined the effect of polar angle. Experiment 1 examined the effect of polar angle when the target and surround differed in luminance.

View Article and Find Full Text PDF