Publications by authors named "Yutaka Ohsedo"

-Monosubstituted ethylenediamine derivatives with three methylene-tethered aromatic groups ((ArCH)NCHCHN(R)CHAr (R-ArArAr), where Ar = 2-pyridyl, 2-quinolyl, 1- and 3-isoquinolyl and 2-quinoxalyl; R = methyl, benzyl and phenyl) were utilized as pentadentate ligands for copper(II) complexation. Fifteen mononuclear copper(II) complexes were synthesized and exhibit differences in cyclic voltammetry, absorption spectroscopy and solid state geometries, depending on the aromatic group (Ar) and the substituent on the aliphatic nitrogen atom (R) of the ligand. Compared with the pyridine and isoquinoline complexes, the quinoline and quinoxaline derivatives exhibit distinct Cu(II)/Cu(I) redox potentials and d-d transition absorption wavelengths.

View Article and Find Full Text PDF

Chemiluminescence in solution-based systems has been extensively studied for the chemical analysis of biomolecules. However, investigations into the control of chemiluminescence reactions in gel-based systems, which offer flexibility in reaction conditions (such as the softness of the reaction environment), have only recently begun in polymer materials, with limited exploration in low-molecular-weight gelator (LMWG) systems. In this study, we investigated the chemiluminescence behaviors in the gel states using LMWG systems and evaluated their applicability to fluorescent-dye-containing molecular organogel systems/oxidant-containing aqueous systems.

View Article and Find Full Text PDF

The creation of polymer composite materials by compositing fillers into polymer materials is an effective method of improving the properties of polymer materials, and the development of new fillers and their novel composite methods is expected to lead to the creation of new polymer composite materials. In this study, we develop a new filler material made of low-molecular-weight gelators by applying a gelation process that simultaneously performs the swelling (gelation) of crosslinked polymer materials and the self-assembly of low-molecular-weight gelators into low-dimensional crystals in organic solvents within polymer materials. The gelation process of crosslinking rubber-based polymers using alkylhydrazides/toluene as the low-molecular-weight gelator allowed us to composite self-assembled sheet-like crystals of alkylhydrazides as fillers in polymeric materials, as suggested by various microscopic observations, including infrared absorption measurements, small-angle X-ray diffraction measurements and thermal analysis, microscopy, and infrared absorption measurements.

View Article and Find Full Text PDF

Here, we introduce an organic/inorganic composite hydrogel as a versatile gel electrode material. This composite hydrogel was formed by simply mixing an aqueous solution of flat microparticles of tungsten oxide, exhibiting superior water dispersibility, with a hydrogel composed of a water-soluble polyaramide-based polymer hydrogelator. The resulting composite hydrogel exhibited uniform dispersion of tungsten oxide flat particles throughout the hydrogel matrix, supplementing the structure formed by the polymer hydrogelator.

View Article and Find Full Text PDF

Eighteen mononuclear copper(II) complexes with oxygen-containing N4O1 pentadentate ligands were prepared. The ligand library consists of 2-aminoethanol derivatives ((ArCH)(ArCH)NCHCHOCHAr) bearing three nitrogen-containing heteroaromatics (Ars) including pyridine, quinoline and isoquinoline a methylene linker. Systematic replacements of pyridine binding sites with quinolines and isoquinolines reveal the general trends in the perturbation of bond distances and angles, the redox potential and the absorption maximum wavelength of the copper(II) complexes, depending on the position and number of (iso)quinoline heteroaromatics.

View Article and Find Full Text PDF

Polybenzoxazine (PBZ) exhibits excellent heat resistance, and PBZ derivatives have been designed and synthesized to achieve high performance. However, the application range of PBZ is limited by the strong interactions between molecular chains and its low solubility in organic solvents, thereby limiting its processability. This study focused on the benzoxazine structure as the molecular backbone of new hydrogel materials that can be applied as electrolyte materials and prepared functional gel materials.

View Article and Find Full Text PDF

Molecular gels, which are soft and flexible materials, are candidates for healthcare, cosmetic base, and electronic applications as new materials. In this study, a new polymeric organogelator bearing a polyrotaxane () structure was developed and could induce the gelation of ',″-dimethylformamide (DMF), a known solvent for dissolving polymeric materials and salts. Furthermore, the resulting DMF molecular gels exhibited thixotropic properties, observed by the inversion method using vials, which are essential for gel spreading.

View Article and Find Full Text PDF

Molecular oleogels have the potential to be used as materials in healthcare applications. However, their design and synthesis are complex, thus requiring simple and effective methods for their preparation. This paper reports on alkylanilides that are low molecular-weight organogelators, which when appropriately mixed with different alkyl chain lengths could result in the formation of mixed molecular gels that exhibit excellent gel-forming ability and mechanical properties.

View Article and Find Full Text PDF

Polymer hydrogels, including molecular hydrogels, are expected to become materials for healthcare and medical applications, but there is a need to create new functional molecular gels that can meet the required performance. In this paper, for creating new molecular hydrogel materials, the gel formation behavior and its rheological properties for the molecular gels composed of a polymer hydrogelator, poly(3-sodium sulfo--phenylene-terephthalamide) polymer (), and water-soluble polymer with the polar group, poly(vinyl alcohol) () in various concentrations were examined. Molecular hydrogel composites formed from simple mixtures of aqueous solutions (0.

View Article and Find Full Text PDF

The author reported molecular organogels using -alkylhydantoins as new low-molecular-weight gelators for the first time, and thixotropic mixed molecular organogels using a set of -alkylhydantoin gelators with different alkyl chain lengths. These homologous compounds with different alkyl chains are found to form macroscopic crystals or solution states in polar solvents, but form homogeneous organogels in non-polar solvents, such as -octane and squalane. Although there is no significant increase in the minimum gelation concentration of the mixed molecular gels using squalane as a solvent, these mixed molecular organogels show improved mechanical properties, especially in their thixotropic behavior, which is not observed in the single -alkylhydantoin gels.

View Article and Find Full Text PDF

To expand the range of applications of hydrogels, researchers are interested in developing novel molecular hydrogel materials that have affinities for the living body and the ability to mediate electrical signals. In this study, a simple mixing method for creating a novel composite molecular gel is employed, which combines a hydrophilic conductive polymer, a polyaniline/phosphoric acid complex, and a polymer hydrogelator as a matrix. The composite hydrogel showed an improved gel-forming ability; more effective mechanical properties, with an increased strain value at the sol-gel transition point compared to the single system, which may be sufficient for paintable gel; and a better electrochemical response, due to the electrically conducting polyaniline component.

View Article and Find Full Text PDF

Low-molecular-weight hydrogelators containing stearoyl, glycine, and D-glucamine moieties with or without methyl groups were synthesized to prepare chemically tuned molecular hydrogels. To evaluate the role of hydrogen bonding of hydrogelators in molecular hydrogel formation, the author has newly synthesized hydrogelators with or without methyl groups at their N-H in amide groups, contributing to the hydrogen bond formation in fiber in molecular hydrogels. The obtained hydrogels exhibited improved thixotropic performance with tunable softness, exhibiting pseudo-reversible thixotropic cycles that depended on the methyl substitution positions in the hydrogelators.

View Article and Find Full Text PDF

Here, we demonstrate the novel double-component liquid crystalline colloids composed of mesogenic inorganic nanosheets and the rods with dynamically variable length controlled by temperature. As the length-controllable rod, stiff biopolymer microtubule is used, which was successfully polymerized/depolymerized from tubulin proteins through a biochemical process even in the presence of the nanosheets. The mesoscopic structure of the liquid crystal phase was reversibly modifiable as caused by the change of the rod length.

View Article and Find Full Text PDF

Anisotropic chemical wave propagation of self-oscillating Belousov-Zhabotinsky (BZ) reaction was demonstrated in the poly( N-isopropylacrylamide) gel films embedded with macroscopically aligned liquid crystalline inorganic nanosheets. Although the average propagation rate of chemical wave v̅ was 3.56 mm min in the gels without nanosheets, the propagation was retarded in the gels with 1 wt % of nanosheets: [Formula: see text] = 1.

View Article and Find Full Text PDF

A composite gel composed of a water-soluble aromatic polyamide hydrogelator and the nanosheet Laponite®, a synthetic layered silicate, was produced and found to exhibit thixotropic behaviour. Whereas the composite gel contains the gelator at the same concentration as the molecular gel made by the gelator only, the composite gel becomes a softer thixotropic gel compared to the molecular gel made by the gelator only. The reason for this could be that bundles of polymer gelator may be loosened and the density of the polymer network increased in the presence of Laponite.

View Article and Find Full Text PDF

Ointments have been widely used as an efficient means of transdermal drug application for centuries. In order to create ointments suitable for various new medicinal drugs, the creation of ointment base materials, such as gels, has attracted much research attention in this decade. On the other hand, the chemical tuning of low-molecular-weight gelators (LMWGs) has been increasingly studied for two decades because LMWGs can be tailored for different purposes by molecular design and modification.

View Article and Find Full Text PDF

Hydrogels of poly(2-hydroxyethyl methacrylate) (PHEMA) with well-defined polyelectrolyte brushes of poly(sodium 4-styrenesulfonate) (PNaSS) of various molecular weights were synthesized, keeping the distance between the polymer brushes constant at ca. 20 nm. The effect of polyelectrolyte brush length on the sliding friction against a glass plate, an electrorepulsive solid substrate, was investigated in water in a velocity range of 7.

View Article and Find Full Text PDF