Publications by authors named "Yutaka Nomura"

We present mid-infrared (MIR) supercontinuum generation in polarization-maintained ZBLAN fibers pumped by 2 µm femtosecond pulses from a Tm:YAP regenerative amplifier. A stable supercontinuum that spreads from 380 nm to 4 µm was generated by coupling only 0.5  µJ pulse energy into an elliptical core ZBLAN fiber.

View Article and Find Full Text PDF
Article Synopsis
  • An infrared source was developed with a center wavelength of 1937 nm, capable of producing pulse energies of 1.35 mJ at a repetition rate of 1 kHz and a peak power of 2 GW.
  • The pulses were compressed to 360 femtoseconds after 45 round trips in a diode-pumped Tm:YAP regenerative amplifier.
  • By using 15 μJ from the system's output, researchers generated a white light continuum, demonstrating the system's potential as a pumping source for a mid-infrared optical parametric amplifier.
View Article and Find Full Text PDF

Carrier-envelope-phase (CEP) controlled subcycle midinfrared pulses generated through two-color filamentation have been applied for high-harmonic (HH) generation in a crystalline silicon (Si) membrane. The HH spectrum reaches the ultraviolet region (<300  nm), beyond the direct band gap of Si. The shape of the HH spectrum strongly depends on the CEP.

View Article and Find Full Text PDF

We demonstrate direct generation of sub-50 fs pulses from a thulium-doped fiber amplifier. Broad spectra are obtained by exploiting nonlinear effects within the amplifier fiber itself. High fractional inversion densities of thulium ions achieved by a core-pumping scheme helped to extend spectra into the shorter wavelength region around 1.

View Article and Find Full Text PDF

Carrier-envelope phase (CEP) of single-cycle pulses generated through two-color filamentation has been investigated. We have observed a particular behavior of the phase: the phase of high-frequency components of the generated pulses changes continuously and linearly with the relative phase between the two-color input pulses, whereas the phase of the low-frequency components takes only two discrete values. The transition of the phase behavior has been clearly observed by using frequency-resolved optical gating capable of CEP determination.

View Article and Find Full Text PDF

An ultrafast, passively mode-locked fiber laser oscillator has been realized using thulium-doped ZBLAN fibers. Very low dispersion of ZBLAN glass fibers enabled generation of pulses with broad spectra extending from 1730 nm to 2050 nm. Pulses are obtained with the average power of 13 mW at the repetition rate of 67.

View Article and Find Full Text PDF

Sub-single-cycle pulses in the mid-infrared (MIR) region were generated through a conical emission from a laser-induced filament. Fundamental and second-harmonic pulses of 25-fs Ti:sapphire amplifier output were focused into argon to produce phase-stable broadband MIR pulses in a well-focusable ring-shaped beam. The beam profile and spectrum of the MIR field are accurately reproduced with a simple calculation based on a four-wave mixing process.

View Article and Find Full Text PDF

We demonstrated the synchronization of offset and repetition frequency between two independent Yb-doped fiber mode-locked lasers by injection locking. By injecting master-laser pulse-train into slave laser cavity, stability and accuracy of master frequency comb are transferred to slave comb. Passive stabilization of frequency comb offers robust and convenient way to duplicate frequency comb that can be applied to long-distance comb transfer.

View Article and Find Full Text PDF

Multimillijoule, few-cycle, carrier-envelope-phase (CEP)-locked, near-IR pulses at 750 nm from an optical parametric chirped-pulse amplifier are applied to the generation of CEP-dependent, soft x-ray high harmonics around the boron K-edge at 188 eV. The dependence on the CEP manifests the phase coherence of high harmonics preserved in the highest-photon energy ever reported. Multimillijoule optical pulses also allow the extension of the cutoff energy up to 325 eV, exceeding the carbon K-edge of the water window.

View Article and Find Full Text PDF

We present a quasi-cw laser in a vacuum ultraviolet region at megahertz repetition rate. The narrowband pulses generated from an ytterbium-fiber laser system at 33 MHz repetition rate at the central wavelength of 1074 nm are frequency-converted by successive stages of LiB(3)O(5) crystals and KBe(2)BO(3)F(2) crystals. The generated radiation at 153 nm has the shortest wavelength achieved through phase-matched frequency conversion processes in nonlinear optical crystals to our knowledge.

View Article and Find Full Text PDF

Compensation of the intracavity dispersion in the mode-locked oscillator is known to be one of the most important factors for ultrashort pulse generation. However, recent investigations of a Yb-doped fiber mode-locked oscillator revealed that precise third-order dispersion (TOD) compensation is not always necessary for ultrashort pulse generation, owing to the strong nonlinearity that compensates residual TOD without reducing its spectral bandwidth. The origin of the nonlinear TOD compensation has remained unclear.

View Article and Find Full Text PDF

We report the amplification of three-cycle, 8.5 fs optical pulses in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) up to energies of 80 mJ. Improved dispersion management in the amplifier by means of a combination of reflection grisms and a chirped-mirror stretcher allowed us to recompress the amplified pulses to within 6% of their Fourier limit.

View Article and Find Full Text PDF