Atopic dermatitis (AD) is one of the most prevalent intractable chronic itch diseases worldwide. In recent years, new molecular-targeted drugs have emerged, but side effects and economic challenges remain. Therefore, since it is important for AD patients to have a wider range of treatment options, it is important to explore new therapeutic agents.
View Article and Find Full Text PDFA novel class of potent Na1.7 inhibitors has been discovered. The replacement of diaryl ether in compound was investigated to enhance mouse Na1.
View Article and Find Full Text PDFNeuropathic pain, an intractable pain symptom that occurs after nerve damage, is caused by the aberrant excitability of spinal dorsal horn (SDH) neurons. Gabapentinoids, the most commonly used drugs for neuropathic pain, inhibit spinal calcium-mediated neurotransmitter release by binding to αδ-1, a subunit of voltage-gated calcium channels, and alleviate neuropathic pain. However, the exact contribution of αδ-1 expressed in SDH neurons to the altered synaptic transmission and mechanical hypersensitivity following nerve injury is not fully understood.
View Article and Find Full Text PDFMirogabalin is a novel gabapentinoid drug with a hydrophobic bicyclo substituent on the γ-aminobutyric acid moiety that targets the voltage-gated calcium channel subunit αδ1. Here, to reveal the mirogabalin recognition mechanisms of αδ1, we present structures of recombinant human αδ1 with and without mirogabalin analyzed by cryo-electron microscopy. These structures show the binding of mirogabalin to the previously reported gabapentinoid binding site, which is the extracellular dCache_1 domain containing a conserved amino acid binding motif.
View Article and Find Full Text PDFGabapentinoids are specific ligands for the αδ-1 subunit of voltage-gated calcium channels. This class of drugs, including gabapentin and pregabalin, exert various pharmacological effects and are widely used for the treatment of epilepsy, anxiety, and chronic pain. The mechanism of action of gabapentinoids involves both direct modulation of calcium channel kinetics and inhibition of channel trafficking and expression, which contribute to the above pharmacological effects.
View Article and Find Full Text PDFThe selective inhibition of Na1.7 is a promising strategy for developing novel analgesic agents with fewer adverse effects. Although the potent selective inhibition of Na1.
View Article and Find Full Text PDFMirogabalin is a novel potent and selective ligand for the αδ subunit of voltage-gated calcium channels, and shows potent and sustained analgesic effects in neuropathic pain and fibromyalgia models. Fibromyalgia is often associated with multiple comorbid symptoms, such as anxiety, depression and cognitive impairment. In the present study, we investigated the effects of mirogabalin on cognitive impairments in an experimental animal model for fibromyalgia, repeated intramuscular acidic saline injection model (Sluka model) rats.
View Article and Find Full Text PDFThe discovery of a novel class of state-dependent voltage-gated sodium channel (Na)1.7 inhibitors is described. By the modification of amide or urethane bond in Na1.
View Article and Find Full Text PDFA highly potent, selective Na1.7 inhibitor, DS-1971a, has been discovered. Exploration of the left-hand phenyl ring of sulfonamide derivatives ( and ) led to the discovery of novel series of cycloalkane derivatives with high Na1.
View Article and Find Full Text PDFBackground: Mental disorders including anxiety and depression are common comorbidities in fibromyalgia patients, and exert a profound impact on their quality of life. Mirogabalin, a novel ligand for the αδ-subunit of voltage-gated calcium channels, shows analgesic effects in fibromyalgia and neuropathic pain models. To provide additional information regarding its potential utility for treating chronic pain, we examined its anxiolytic-like effects in rats repeatedly injected with acidic saline intramuscularly (Sluka model), as an experimental fibromyalgia model.
View Article and Find Full Text PDFMirogabalin, a novel ligand for the αδ subunit of voltage-gated calcium channels, has been approved for the treatment of peripheral neuropathic pain including painful diabetic peripheral neuropathy (DPNP) and postherpetic neuralgia (PHN) in Japan. Mirogabalin showed potent and selective binding affinities for the αδ subunits, and slower dissociation rates for the αδ-1 subunit than for the αδ-2 subunit. It also showed potent and long-lasting analgesic effects in rat models of neuropathic pain, and wider safety margins for the central nervous system side effects.
View Article and Find Full Text PDFRationale: Psychiatric disorders such as anxiety and depression are frequently observed in neuropathic pain patients, and negatively impact their quality of life. Mirogabalin is a novel ligand for the αδ subunit of voltage-gated calcium channels and has unique binding characteristics to αδ subunits and potent and long-lasting analgesic effects in neuropathic pain models.
Objectives: To provide further information on the pharmacological profile of mirogabalin and its utility for chronic pain therapy, we investigated its anxiolytic effects in an experimental animal model for neuropathic pain.
Several studies have reported on the beneficial effects of memantine on behavioral and psychological symptoms of dementia (BPSD) in patients with Alzheimer's disease. However, the effects of memantine on BPSD-like behaviors in animals have not been well addressed. Here, the effects of memantine on memory disturbance and BPSD-like behaviors were evaluated in thiamine-deficient (TD) mice.
View Article and Find Full Text PDFMirogabalin, a novel ligand for the αδ subunit of voltage-gated calcium channels, is under the development for the treatment of neuropathic pain. Mirogabalin specifically and potently binds to αδ subunits, and it shows analgesic effects in both peripheral and central neuropathic pain models in rats. To expand pharmacological findings on mirogabalin and provide additional information of its potential for chronic pain therapy, we examined the effects of mirogabalin in 2 experimental models of fibromyalgia, namely, the intermittent cold stress model (ICS model) and the unilateral intramuscular acidic saline injection model (Sluka model).
View Article and Find Full Text PDFWe identified novel (3R, 5S)-3-aminomethyl-5-methanesulfanyl hexanoic acid (5a: DS75091588) and (3R, 5S)-3-aminomethyl-5-ethanesulfanyl hexanoic acid (6a: DS18430756) as sulfur-containing γ-amino acid derivatives that were useful for the treatment of neuropathic pain. These two compounds exhibited a potent analgesic effect in animal models of both type I diabetes and type II diabetes, and good pharmacokinetics.
View Article and Find Full Text PDFMirogabalin ([(1,5,6)-6-(aminomethyl)-3-ethylbicyclo[3.2.0]hept-3-en-6-yl]acetic acid), a novel ligand for the subunit of voltage-gated calcium channels, is being developed to treat pain associated with diabetic peripheral neuropathy and postherpetic neuralgia.
View Article and Find Full Text PDFPainful peripheral neuropathy has been correlated with various voltage-gated sodium channel mutations in sensory neurons. Recently Nav1.9, a voltage-gated sodium channel subtype, has been established as a genetic influence for certain peripheral pain syndromes.
View Article and Find Full Text PDFA novel class of NaV1.7 inhibitors has been identified by high-throughput screening followed by structure activity relationship studies. Among this series of compounds, piperidine 9o showed potent human and mouse NaV1.
View Article and Find Full Text PDFIntrathecal baclofen therapy by the continuous intrathecal infusion of baclofen has been shown to be an effective treatment for spasticity in patients with spinal cord injury, cerebral palsy, traumatic brain injury, multiple sclerosis and other disorders. To demonstrate the efficacy and safety of intrathecal baclofen therapy, we investigated the muscle relaxant and neurotoxic activities of intrathecal baclofen in rats, compared with intravenous baclofen. Intrathecal and intravenous administration of baclofen dose-dependently inhibited the anemic decerebrate rigidity with ED(50) values of 0.
View Article and Find Full Text PDFPurpose: Nefiracetam (NEF) is a novel pyrrolidonetype nootropic agent, and it has been reported to possess various pharmacologic effects as well as cognition-enhancing effects. The present study focused on the effects of NEF in amygdala-kindled seizures and its potential for antiepileptic therapy.
Methods: Effects of NEF on fully amygdala-kindled seizures and development of amygdala-kindled seizures were investigated in rats and compared with those of levetiracetam (LEV), a pyrrolidone-type antiepileptic drug (AED).
Nefiracetam is a novel pyrrolidone-type nootropic agent, and it has been reported to possess a potential for antiepileptic therapy as well as cognition-enhancing effects. We investigated the anticonvulsant and neuroprotective effects of nefiracetam in kainic acid-induced seizures of rats, compared with levetiracetam and standard antiepileptic drugs. Subcutaneous injection of kainic acid (10 mg/kg) induced typical behavioral seizures such as wet dog shakes and limbic seizures and histopathological changes in the hippocampus (degeneration and loss of pyramidal cells in CA1 to CA4 areas).
View Article and Find Full Text PDFPurpose: Nefiracetam (NEF) is a novel pyrrolidone-type nootropic agent, and it has been reported to possess various pharmacologic effects as well as cognition-enhancing effects. The present study focused on the anticonvulsant effect of NEF and its potential for antiepileptic therapy.
Methods: The anticonvulsant properties of NEF were investigated in experimental seizure models of mice and rats, compared with levetiracetam (LEV) and other standard antiepileptic drugs [AEDs; zonisamide (ZNS), phenytoin (PHT), carbamazepine (CBZ), valproic acid (VPA), diazepam (DZP), and ethosuximide (ESM)].
DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate), a calmodulin antagonist, provides protection against Ca(2+) overload-associated cytotoxicity and brain injury after cerebral ischemia in rats. In this study, we assessed the effect of DY-9760e on ischemic infarct volume in cats subjected to permanent focal cerebral ischemia.
View Article and Find Full Text PDF