Publications by authors named "Yutaka Imokawa"

The conversion of multinucleate postmitotic muscle fibers to dividing mononucleate progeny cells (cellularisation) occurs during limb regeneration in salamanders, but the cellular events and molecular regulation underlying this remarkable process are not understood. The homeobox gene Msx1 has been studied as an antagonist of muscle differentiation, and its expression in cultured mouse myotubes induces about 5% of the cells to undergo cellularisation and viable fragmentation, but its relevance for the endogenous programme of salamander regeneration is unknown. We dissociated muscle fibers from the limb of larval salamanders and plated them in culture.

View Article and Find Full Text PDF

Regeneration in urodele amphibians such as the newt reflects the local plasticity of differentiated cells. Newt myotubes and myofibres undergo S phase re-entry and cellularisation in the limb blastema, and we have analysed the regulation of Myf5 in relation to these events. Surprisingly, Myf5 was expressed after fusion in cultured newt myotubes and in myofibers of the adult limb, in contrast to its familiar expression in myoblasts in other vertebrates.

View Article and Find Full Text PDF

Lens regeneration in urodele amphibians such as the newt proceeds from the dorsal margin of the iris where pigment epithelial cells (PEC) re-enter the cell cycle and transdifferentiate into lens. A general problem in regeneration research is to understand how the events of tissue injury or removal are coupled to the activation of plasticity in residual differentiated cells or stem cells. Thrombin, a pivotal regulator of the injury response, has been implicated as a regulator of cell cycle re-entry in newt myotubes, and also in newt iris PEC.

View Article and Find Full Text PDF

The regeneration of structures in adult animals depends on a mechanism for coupling the acute response to tissue injury or removal with the local activation of plasticity in residual differentiated cells or stem cells. Many potentially relevant signals are generated after injury, and the nature of this mechanism has not been elucidated for any instance of regeneration. Lens regeneration in adult vertebrates always occurs at the pupillary margin of the dorsal iris, where pigmented epithelial cells (PEC) reenter the cell cycle and transdifferentiate into the lens, but the basis of this striking preference for the dorsal margin over the ventral is unknown.

View Article and Find Full Text PDF

Background: When a cell is infected with scrapie prions, newly synthesized molecules of the prion protein PrP(C) are expressed at the cell surface and may subsequently be converted to the abnormal form PrP(Sc). In an experimental scrapie infection of an animal, the initial innoculum of PrP(Sc) is cleared relatively rapidly, and the subsequent propagation of the infection depends on the ability of infected cells to convert uninfected target cells to stable production of PrP(Sc). The mechanism of such cell-based infection is not understood.

View Article and Find Full Text PDF