Publications by authors named "Yutaka Hosokawa"

While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition.

View Article and Find Full Text PDF

Auditory induction is a continuity illusion in which missing sounds are perceived under appropriate conditions, for example, when noise is inserted during silent gaps in the sound. To elucidate the neural mechanisms underlying auditory induction, neural responses to tones interrupted by a silent gap or noise were examined in the core and belt fields of the auditory cortex using real-time optical imaging with a voltage-sensitive dye. Tone stimuli interrupted by a silent gap elicited responses to the second tone following the gap as well as early phasic responses to the first tone.

View Article and Find Full Text PDF

Optical imaging with a voltage-sensitive dye was conducted in frontal slices of rat auditory cortex to study spatiotemporal patterns of response to repetitive electrical stimulation. When the rate of repetitive stimulation increased to 40 Hz, the amplitude ratio of the response after the fifth stimulus to the response after the first stimulus was significantly smaller in layers II/III than in layer IV or in layers V/VI. Similar results were obtained regardless of where electrical stimulation was applied.

View Article and Find Full Text PDF

Locating the source of a sound is an important function of the auditory system and interaural intensity differences are one of the most important cues. To study the functional pathways of sound localisation processing in the auditory cortex, activity in multiple fields of the guinea pig auditory cortex during stimulation with interaural intensity differences was studied using optical imaging with a voltage-sensitive dye. Of the auditory core (primary and dorsocaudal) and the belt fields which surround them, the posterior and ventroposterior belt fields were the most sensitive to interaural intensity differences.

View Article and Find Full Text PDF

Spatiotemporal patterns of neuronal responses to asynchronous two-tone stimuli in the anterior field of the auditory cortex of anesthetized guinea pigs were studied using an optical recording method (12 x 12 photodiode array, voltage sensitive dye RH795). Interactions between the onset response to the first tone (masker; 5, 8, 10, 12 and 15 kHz, 200 ms) and to the second tone (probe; 10 kHz, 30 ms) with onset delays relative to the masker onset (0, 5, 10, 15 and 20 ms) were investigated. In general, two-tone interaction was suppressive rather than facilitative.

View Article and Find Full Text PDF