Publications by authors named "Yutaka Hirose"

Chemical modifications of cellular RNAs play key roles in gene expression and host defense. The cap-adjacent ,2'--dimethyladenosine (mAm) is a prevalent modification of vertebrate and viral mRNAs and is catalyzed by the newly discovered methyltransferase PCIF1. However, its role in gene expression remains unclear due to conflicting reports on its effects on mRNA stability and translation.

View Article and Find Full Text PDF

We present robust pixel design methodologies for a vertical avalanche photodiode-based CMOS image sensor, taking account of three critical practical factors: (i) "guard-ring-free" pixel isolation layout, (ii) device characteristics "insensitive" to applied voltage and temperature, and (iii) stable operation subject to intense light exposure. The "guard-ring-free" pixel design is established by resolving the tradeoff relationship between electric field concentration and pixel isolation. The effectiveness of the optimization strategy is validated both by simulation and experiment.

View Article and Find Full Text PDF

N 6-methyladenosine (m6A), the most abundant modification in eukaryotic mRNAs, plays an important role in mRNA metabolism and functions. When adenosine is transcribed as the first cap-adjacent nucleotide, it is methylated at the ribose 2'-O and N6 positions, thus generating N6, 2'-O-dimethyladenosine (m6Am). Phosphorylated C-terminal domain (CTD)-interacting factor 1 (PCIF1) is a novel cap-specific adenine N6-methyltransferase responsible for m6Am formation.

View Article and Find Full Text PDF

Purpose: To expand the recent description of a new neurodevelopmental syndrome related to alterations in CDK19.

Methods: Individuals were identified through international collaboration. Functional studies included autophosphorylation assays for CDK19 Gly28Arg and Tyr32His variants and in vivo zebrafish assays of the CDK19 and CDK19.

View Article and Find Full Text PDF

We present an analysis of carrier dynamics of the single-photon detection process, i.e., from Geiger mode pulse generation to its quenching, in a single-photon avalanche diode (SPAD).

View Article and Find Full Text PDF

-methyladenosine (mA), a major modification of messenger RNAs (mRNAs), plays critical roles in RNA metabolism and function. In addition to the internal mA, , 2'--dimethyladenosine (mAm) is present at the transcription start nucleotide of capped mRNAs in vertebrates. However, its biogenesis and functional role remain elusive.

View Article and Find Full Text PDF

We have developed a direct time-of-flight (TOF) 250 m ranging Complementary Metal Oxide Semiconductor (CMOS) image sensor (CIS) based on a 688 × 384 pixels array of vertical avalanche photodiodes (VAPD). Each pixel of the CIS comprises VAPD with a standard four transistor pixel circuit equipped with an analogue capacitor to accumulate or count avalanche pulses. High power near infrared (NIR) short (<50 ns) and repetitive (6 kHz) laser pulses are illuminated through a diffusing optics.

View Article and Find Full Text PDF

We have developed a real time ultraviolet (UV) imaging system that can visualize both invisible UV light and a visible (VIS) background scene in an outdoor environment. As a UV/VIS image sensor, an organic photoconductive film (OPF) imager is employed. The OPF has an intrinsically higher sensitivity in the UV wavelength region than those of conventional consumer Complementary Metal Oxide Semiconductor (CMOS) image sensors (CIS) or Charge Coupled Devices (CCD).

View Article and Find Full Text PDF

Ribosome engineering, originally applied to Streptomyces lividans, has been widely utilized for strain improvement, especially for the activation of bacterial secondary metabolism. This study assessed ribosome engineering technology to modulate primary metabolism, taking butanol production as a representative example. The introduction into Clostridium saccharoperbutylacetonicum of mutations conferring resistance to butanol (But) and of the str mutation (Sm; a mutation in the rpsL gene encoding ribosomal protein S12), conferring high-level resistance to streptomycin, increased butanol production 1.

View Article and Find Full Text PDF

In eukaryotes, the Mediator complex has important roles in regulation of transcription by RNA polymerase II. Mediator is a large complex with more than 20 subunits that form head, middle, tail and CDK/cyclin modules. Among them, CDK8 and/or CDK19 (CDK8/19), and their counterpart cyclin C, form the CDK/cyclin module together with Mediator subunits MED12 and MED13.

View Article and Find Full Text PDF

The C-terminal domain (CTD) of the RNA polymerase II (Pol II) large subunit contains tandem repeats of the heptapeptide, Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. The CTD is subject to dynamic phosphorylation during transcription, mainly at serine residues (Ser2, Ser5 and Ser7). Regulation of CTD phosphorylation by specific kinases and phosphatases is crucial for coordinating transcription with RNA processing and histone modification.

View Article and Find Full Text PDF

The Mediator complex (Mediator) plays key roles in transcription and functions as the nexus for integration of various transcriptional signals. Previously, we screened for Mediator cyclin-dependent kinase (CDK)-interacting factors and identified three proteins related to chromatin regulation. One of them, SUZ12 is required for both stability and activity of Polycomb Repressive Complex 2 (PRC2).

View Article and Find Full Text PDF

The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is composed of tandem repeats of the heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. The CTD of Pol II undergoes reversible phosphorylation during the transcription cycle, mainly at Ser2, Ser5, and Ser7. Dynamic changes in the phosphorylation patterns of the CTD are responsible for stage-specific recruitment of various factors involved in RNA processing, histone modification, and transcription elongation/termination.

View Article and Find Full Text PDF

In eukaryotes, holo-Mediator consists of four modules: head, middle, tail, and CDK/Cyclin. The head module performs an essential function involved in regulation of RNA polymerase II (Pol II). We studied the human head module subunit MED17 (hMED17).

View Article and Find Full Text PDF

In eukaryotes, positive cofactor 4 (PC4) stimulates activator-dependent transcription by facilitating transcription initiation and the transition from initiation to elongation. It also forms homodimers and binds to single-stranded DNA and various transcriptional activators, including the general transcription factor TFIIH. In this study, we further investigated PC4 from Homo sapiens and the nematode Caenorhabditis elegans (hPC4 and cePC4, respectively).

View Article and Find Full Text PDF

In eukaryotes, the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is composed of tandem repeats of the heptapeptide YSPTSPS, which is subjected to reversible phosphorylation at Ser2, Ser5, and Ser7 during the transcription cycle. Dynamic changes in CTD phosphorylation patterns, established by the activities of multiple kinases and phosphatases, are responsible for stage-specific recruitment of various factors involved in RNA processing, histone modification, and transcription elongation/termination. Yeast Ssu72, a CTD phosphatase specific for Ser5 and Ser7, functions in 3'-end processing of pre-mRNAs and in transcription termination of small non-coding RNAs such as snoRNAs and snRNAs.

View Article and Find Full Text PDF

A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains.

View Article and Find Full Text PDF

The Mediator complex consists of more than 20 subunits. This is composed of four modules: head, middle, tail and CDK/Cyclin. Importantly, Mediator complex is known to play pivotal roles in transcriptional regulation, but its molecular mechanisms are still elusive.

View Article and Find Full Text PDF

Mediator is a large complex containing up to 30 subunits that consist of four modules each: head, middle, tail and CDK/Cyclin. Recent studies have shown that CDK8, a subunit of the CDK/Cyclin module, is one of the key subunits of Mediator that mediates its pivotal roles in transcriptional regulation. In addition to CDK8, CDK19 was identified in human Mediator with a great deal of similarity to CDK8 but was conserved only in vertebrates.

View Article and Find Full Text PDF

Background: The control of gene expression is essential for growth and responses to environmental changes in various organisms. It is known that some meiosis-specific genes are silenced during mitosis and expressed upon nitrogen starvation in Schizosaccharomyces pombe. When the factors responsible for this regulation were studied, a hip3 mutant was isolated via discovery of a defect in the transcriptional repression of meiosis-specific genes.

View Article and Find Full Text PDF

Recent research into mRNA maturation processes in the nucleus has identified a number of proteins involved in mRNA transcription, capping, splicing, end processing and export. Among them, the Tap-p15 heterodimer acts as an mRNA export receptor. Tap-p15 is recruited onto fully processed mRNA in the nucleus, which is ready for export to the cytoplasm, through associating with Aly or SR proteins on mRNA, or by directly associating with a constitutive transport element (CTE), an RNA element derived from type D retroviruses.

View Article and Find Full Text PDF

Curcuminoids, natural products in the rhizome of turmeric, show various biological activities, including antioxidant and antitumor activities. For this reason, curcuminoids have been focused on as potential pharmaceuticals. Exogenous supplementation with various carboxylate precursors in genetically engineered Escherichia coli cells carrying an artificially assembled pathway for curcuminoid biosynthesis led to the production of 17 unnatural curcuminoids.

View Article and Find Full Text PDF

The carboxy-terminal domain (CTD) of the RNA polymerase II (Pol II) largest subunit undergoes reversible phosphorylation during transcription cycle. The phosphorylated CTD plays critical roles in coordinating transcription with chromatin modification and RNA processing by serving as a scaffold to recruit various proteins. Recently, we identified a novel human WW domain-containing protein PCIF1 as a phosphorylated CTD-interacting factor and demonstrated that PCIF1 negatively modulates Pol II activity in vivo.

View Article and Find Full Text PDF